【20160924】GOCVHelper 图像增强部分(2)

//填充孔洞

//fillholes

Mat fillHoles(Mat src){

Mat dst = getInnerHoles(src);

threshold(dst,dst,0,255,THRESH_BINARY_INV);

dst = src + dst;

return dst;

}

//获得图像中白色的比率

float getWhiteRate(Mat src){

int iWhiteSum = 0;

for (int x =0;x<src.rows;x++){

for (int y=0;y<src.cols;y++){

if (src.at<uchar>(x,y) != 0)

iWhiteSum = iWhiteSum +1;

}

}

return (float)iWhiteSum/(float)(src.rows*src.cols);

}

//获得内部孔洞图像

Mat getInnerHoles(Mat src){

Mat clone = src.clone();

srand((unsigned)time(NULL));  // 生成时间种子

float fPreRate = getWhiteRate(clone);

float fAftRate = 0;

do {

clone = src.clone();

// x y 对于 cols rows

floodFill(clone,Point((int)rand()%src.cols,(int)rand()%src.rows),Scalar(255));

fAftRate = getWhiteRate(clone);

} while ( fAftRate < 0.6);

return clone;

}

// end of fillHoles

填充孔洞算法是我参考相关资料自己实现的。填充孔洞的关键在于获得“内部孔洞图像”。我采用的方法是在图像上随机寻找一个点作为floodfill的初始点,然后以scalar(255)来进行填充。重复这个过程,直到整个图片的白色值占到了全部图像的60%.

填充前

填充后

来自为知笔记(Wiz)

时间: 2024-12-29 01:17:43

【20160924】GOCVHelper 图像增强部分(2)的相关文章

【20160924】GOCVHelper 图像增强部分(4)

//使得rect区域半透明 Mat translucence(Mat src,Rect rect,int idepth){ Mat dst = src.clone(); Mat roi = dst(rect); roi += cv::Scalar(idepth,idepth,idepth); return dst; } 将选择的区域打上变成半透明.虽然这只是一个简单的函数,但是使用起来灵活多变. 比如说,可以将图像某个区域变成半透明,然后在上面写字,这样起到强化作用: 也可以将一个区域图片在半透

【20160924】GOCVHelper 图像增强部分(1)

图像增强是图像处理的第一步.这里集成了一些实际使用过程中有用的函数. //读取灰度或彩色图片到灰度 Mat imread2gray(string path){ Mat src = imread(path); Mat srcClone = src.clone(); if (CV_8UC3 == srcClone.type() ) cvtColor(srcClone,srcClone,CV_BGR2GRAY); return srcClone; } 算法核心在于判断读入图片的通道数,如果是灰度图片则

【20160924】GOCVHelper 图像增强部分(5)

// Multiply 正片叠底 void Multiply(Mat& src1, Mat& src2, Mat& dst) { for(int index_row=0; index_row<src1.rows; index_row++) { for(int index_col=0; index_col<src1.cols; index_col++) { for(int index_c=0; index_c<3; index_c++) dst.at<Vec3

【20160924】GOCVHelper 图像增强部分(3)

//顶帽去光差,radius为模板半径 Mat moveLightDiff(Mat src,int radius){ Mat dst; Mat srcclone = src.clone(); Mat mask = Mat::zeros(radius*2,radius*2,CV_8U); circle(mask,Point(radius,radius),radius,Scalar(255),-1); //顶帽 erode(srcclone,srcclone,mask); dilate(srcclo

基于Opencv和Mfc的图像处理增强库GOCVHelper(索引)

GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的功能增强. 这里将算法库开放源代码,并且编写一系列blog对函数实现进行说明.目的是在于“取之于互联网,用之于互联网”.并且也希望该库能够继续发展下去. 由于算法库基于Opencv和Mfc进行编写,所以要求阅读使用者具备一定基础. 最终提交的是GOCVHelper.h 和GOCVHelper版本号.

【20160924】GOCVHelper综述

GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的功能增强. 这里将算法库开放源代码,并且编写一系列blog对函数实现进行说明.目的是在于“取之于互联网,用之于互联网”.并且也希望该库能够继续发展下去. 由于算法库基于Opencv和Mfc进行编写,所以要求阅读使用者具备一定基础. 最终提交的是GOCVHelper.h 和GOCVHelper版本号.

【20160924】GOCVHelper MFC增强算法(5)

CString ExportListToExcel(CString  sExcelFile,CListCtrl* pList, CString strTitle) { CString warningStr; if (pList->GetItemCount ()>0) { CDatabase database; CString sSql; CString tableName = strTitle; // 检索是否安装有Excel驱动 "Microsoft Excel Driver (*

【20160924】GOCVHelper 图像处理部分(1)

增强后的图像需要通过图像处理获得定量的值.在实际程序设计过程中,轮廓很多时候都是重要的分析变量.参考Halcon的相关函数,我增强了Opencv在这块的相关功能.      //寻找最大的轮廓 VP FindBigestContour(Mat src){ int imax = 0; //代表最大轮廓的序号 int imaxcontour = -1; //代表最大轮廓的大小 std::vector<std::vector<cv::Point>>contours; findContou

【20160924】GOCVHelper 图像处理部分(3)

//根据轮廓的圆的特性进行选择 vector<VP> selectShapeCircularity(Mat src,Mat& draw,vector<VP> contours,float minvalue,float maxvalue){ vector<VP> result_contours; draw = Mat::zeros(src.rows,src.cols,CV_8UC3); for (int i=0;i<contours.size();i++){