C++模板的特化与偏特化

最近在看STL的过程中,发现自己对于模板这里的知识有所生疏,因此今日将这部分内容再做整理,以备后忘。

关于C++模板的概念这里不再赘述,默认读者已经具备基础知识。

模板的特化

先看一段代码:

#include <iostream>
using namespace std;
 
template <class T>
class TClass
{
public:
     bool Equal(const T& arg, const T& arg1);
};
 
template <class T>
bool TClass<T>::Equal(const T& arg, const T& arg1)
{
     return (arg == arg1);
}
 
int main()
{
     TClass<int> obj;
     cout<<obj.Equal(2, 2)<<endl;
     cout<<obj.Equal(2, 4)<<endl;
}

类里面就包括一个Equal方法,用来比较两个参数是否相等;上面的代码运行没有任何问题;但是,如果你传入一个float和一个double类型的参数,那么得到的结果有可能不是你想要的。所以,对于float或者double类型,我们需要进行特殊处理,处理如下:

#include <iostream>
using namespace std;
 
template <class T>
class Compare
{
public:
     bool IsEqual(const T& arg, const T& arg1);
};
 
// 已经不具有template的意思了,已经明确为float了
template <>
class Compare<float>
{
public:
     bool IsEqual(const float& arg, const float& arg1);
};
 
// 已经不具有template的意思了,已经明确为double了
template <>
class Compare<double>
{
public:
     bool IsEqual(const double& arg, const double& arg1);
};
 
template <class T>
bool Compare<T>::IsEqual(const T& arg, const T& arg1)
{
     cout<<"Call Compare<T>::IsEqual"<<endl;
     return (arg == arg1);
}
 
bool Compare<float>::IsEqual(const float& arg, const float& arg1)
{
     cout<<"Call Compare<float>::IsEqual"<<endl;
     return (abs(arg - arg1) < 10e-3);
}
 
bool Compare<double>::IsEqual(const double& arg, const double& arg1)
{
     cout<<"Call Compare<double>::IsEqual"<<endl;
     return (abs(arg - arg1) < 10e-6);
}
 
int main()
{
     Compare<int> obj;
     Compare<float> obj1;
     Compare<double> obj2;
     cout<<obj.IsEqual(2, 2)<<endl;
     cout<<obj1.IsEqual(2.003, 2.002)<<endl;
     cout<<obj2.IsEqual(3.000002, 3.0000021)<<endl;
}

这样就实现了模板的特化,对于float和double的特化版本,甚至可以做一些与非特化的不一样的事情,这也是模板特化的初衷,使得特化的模板具有与非特化模板一同的行为。

模板偏特化

上面对模板的特化进行了总结。那模板的偏特化呢?所谓的偏特化是指提供另一份template定义式,而其本身仍为templatized;也就是说,针对template参数更进一步的条件限制所设计出来的一个特化版本。这种偏特化的应用在STL中是随处可见的。比如:

template <class Iterator>
struct iterator_traits {
  typedef typename Iterator::iterator_category iterator_category;
  typedef typename Iterator::value_type        value_type;
  typedef typename Iterator::difference_type   difference_type;
  typedef typename Iterator::pointer           pointer;
  typedef typename Iterator::reference         reference;
};

template <class T>
struct iterator_traits<T*> {
  typedef random_access_iterator_tag iterator_category;
  typedef T                          value_type;
  typedef ptrdiff_t                  difference_type;
  typedef T*                         pointer;
  typedef T&                         reference;
};

template <class T>
struct iterator_traits<const T*> {
  typedef random_access_iterator_tag iterator_category;
  typedef T                          value_type;
  typedef ptrdiff_t                  difference_type;
  typedef const T*                   pointer;
  typedef const T&                   reference;
};

模板的偏特化与模板特化的区别在于,模板特化以后,实际上其本身已经不是templatized,而偏特化,仍然带有templatized。我们来看一个实际的例子:

#include <iostream>
using namespace std;
 
// 一般化设计
template <class T1, class T2>
class TestClass
{
public:
	TestClass()
	{
		cout << "T1, T2" << endl;
	}
};

// 针对普通指针的偏特化设计
template <class T1, class T2>
class TestClass<T1*, T2*>
{
public:
	TestClass()
	{
		cout << "T1*, T2*" << endl;
	}
};

// 针对const指针的偏特化设计
template <class T1, class T2>
class TestClass<const T1*, T2*>
{
public:
	TestClass()
	{
		cout << "const T1*, T2*" << endl;
	}
};

int main()
{
    TestClass<int, char> obj;				//T1,T2
    TestClass<int *, char *> obj1;			//T1*,T2*
    TestClass<const int *, char *> obj2;	//const T1*,T2*
 
    return 0;
}

上面的代码就实现了模板的偏特化

特化与偏特化的调用顺序

对于模板、模板的特化和模板的偏特化都存在的情况下,编译器在编译阶段进行匹配时,是如何抉择的呢?从哲学的角度来说,应该先照顾最特殊的,然后才是次特殊的,最后才是最普通的。编译器进行抉择也是尊从的这个道理。从上面的例子中,我们也可以看的出来,这就就不再举例说明。

时间: 2024-08-02 06:59:05

C++模板的特化与偏特化的相关文章

模板类的全特化、偏特化

我们先来定义一个普通的模板类 1 template<class T> 2 struct Test 3 { 4 Test(){ cout << "模板类" << endl; } 5 }; 我们再来调用一下: 1 int main() 2 { 3 Test<char> t1; 4 Test<int> t2; 5 Test<int *> t3; 6 return 0; 7 } 输出的结果1: 模板类 模板类 模板类 如果

[转]C++中模板的特化与偏特化

转载自:http://hi.baidu.com/klcdyx2008/blog/item/5adbf77b79f316f90bd1873c.html 1.引言C++中的模板分为类模板和函数模板,虽然它引进到C++标准中的时间不是很长,但是却得到了广泛的应用,这一点在STL中有着充分的体现.目前,STL在C++社区中得到了广泛的关注.应用和研究.理解和掌握模板是学习.应用和研究以及扩充STL的基础.而STL模板实例中又充斥着大量的模板特化和偏特化. 2.模板的定义(1) 类模板定义一个栈的类模板,

模板的全特化与偏特化

模板为什么要特化,因为编译器认为,对于特定的类型,如果你能对某一功能更好的实现,那么就该听你的. 模板分为类模板与函数模板,特化分为全特化与偏特化.全特化就是限定死模板实现的具体类型,偏特化就是如果这个模板有多个类型,那么只限定其中的一部分. 先看类模板: [cpp] view plain copy template<typename T1, typename T2> class Test { public: Test(T1 i,T2 j):a(i),b(j){cout<<&quo

模板全特化与偏特化

特化分为全特化与偏特化,全特化就是限定死模板实现的具体类型,偏特化就是如果这个模板有多个类型,那么只限定其中的一部分.本质上,偏特化模板的匹配和选择过程与重载解析非常类似.实际上,在非常复杂的偏特化情况下,编译器可能就是将偏特化直接译成函数,然后直接调用重载解析来处理.重载解析和偏特化匹配都用到了模板参数推导. 例如c++标准库中的类vector的定义 template <class T, class Allocator> class vector { // … // }; template 

C++模板特化与偏特化

C++模板 说到C++模板特化与偏特化,就不得不简要的先说说C++中的模板.我们都知道,强类型的程序设计迫使我们为逻辑结构相同而具体数据类型不同的对象编写模式一致的代码,而无法抽取其中的共性,这样显然不利于程序的扩充和维护.C++模板就应运而生.C++的模板提供了对逻辑结构相同的数据对象通用行为的定义.这些模板运算对象的类型不是实际的数据类型,而是一种参数化的类型.C++中的模板分为类模板和函数模板. 类模板如下: #include <iostream>using namespace std;

C++模板编程里的主版本模板类、全特化、偏特化(C++ Type Traits)

1.  主版本模板类 首先我们来看一段初学者都能看懂,应用了模板的程序: 1 #include <iostream> 2 using namespace std; 3 4 template<class T1, class T2> 5 class A{ 6 public: 7 void function(T1 value1, T2 value2){ 8 cout<<"value1 = "<<value1<<endl; 9 cou

模版的特化和偏特化

模版的特化与偏特化 模板为什么要特化,因为编译器认为,对于特定的类型,如果你能对某一功能更好的实现,那么就该听你的. 模板分为类模板与函数模板,特化分为全特化与偏特化.全特化就是限定死模板实现的具体类型,偏特化就是如果这个模板有多个类型,那么只限定其中的一部分. Partial Template Specialization能够让你在模板(Template)的所有可能的实体中特化出一组子集. 1.模板的特化(template specialization): 例如,定义如下的一个模板: temp

模版的完全特化与偏特化

模板为什么要特化,因为编译器认为,对于特定的类型,如果你能对某一功能更好的实现,那么就该听你的. 模板分为类模板与函数模板,特化分为全特化与偏特化.全特化就是限定死模板实现的具体类型,偏特化就是如果这个模板有多个类型,那么只限定其中的一部分. 模版特化:任何针对模版参数进一步进行条件限制设计的特化版本. <<泛型思维>> 完全特化:针对所有的模版参数进行特化. <<c++ primer>> 类模板: template<class T,class N&g

模版的特化与偏特化

Partial Template Specialization能够让你在模板(Template)的所有可能的实体中特化出一组子集. 1.模板的特化(template specialization):    例如,定义如下的一个模板: template<class Window, class Controller> class Widget { ... 泛化实现代码 ... }; 然后你可以像下面那样明确地加以特化: template<> //注意:template后面的尖括号中不带