hdu3507 Print Article[斜率优化dp入门题]

Print Article

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 11761    Accepted Submission(s): 3586

Problem Description

Zero has an old printer that doesn‘t work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.

Input

There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.

Output

A single number, meaning the mininum cost to print the article.

Sample Input

5 5
5
9
5
7
5

Sample Output

230

Author

Xnozero

Source

2010 ACM-ICPC Multi-University Training Contest(7)——Host by HIT

Recommend

zhengfeng   |   We have carefully selected several similar problems for you:  3506 3501 3504 3505 3498

大概题意就是要输出N个数字a[N],输出的时候可以连续连续的输出,每连续输出一串,它的费用是 “这串数字和的平方加上一个常数M”。

我们设dp[i]表示输出到i的时候最少的花费,sum[i]表示从a[1]到a[i]的数字和。于是方程就是:

dp[i]=dp[j]+M+(sum[i]-sum[j])^2;

很显然这个是一个二维的。题目的数字有500000个,不用试了,二维铁定超时了。那我们就来试试斜率优化吧,看看是如何做到从O(n^2)复杂度降到O(n)的。

分析:

我们假设k<j<i。如果在j的时候决策要比在k的时候决策好,那么也是就是dp[j]+M+(sum[i]-sum[j])^2<dp[k]+M+(sum[i]-sum[k])^2。(因为是最小花费嘛,所以优就是小于)

两边移项一下,得到:(dp[j]+num[j]^2-(dp[k]+num[k]^2))/(2*(num[j]-num[k]))<sum[i]。我们把dp[j]-num[j]^2看做是yj,把2*num[j]看成是xj。

那么不就是yj-yk/xj-xk<sum[i]么?   左边是不是斜率的表示?

那么yj-yk/xj-xk<sum[i]说明了什么呢?  我们前面是不是假设j的决策比k的决策要好才得到这个表示的? 如果是的话,那么就说明g[j,k]=yj-jk/xj-xk<sum[i]代表这j的决策比k的决策要更优。

关键的来了:现在从左到右,还是设k<j<i,如果g[i,j]<g[j,k],那么j点便永远不可能成为最优解,可以直接将它踢出我们的最优解集。为什么呢?

我们假设g[i,j]<sum[i],那么就是说i点要比j点优,排除j点。

如果g[i,j]>=sum[i],那么j点此时是比i点要更优,但是同时g[j,k]>g[i,j]>sum[i]。这说明还有k点会比j点更优,同样排除j点。

排除多余的点,这便是一种优化!

接下来看看如何找最优解。

设k<j<i。

由于我们排除了g[i,j]<g[j,k]的情况,所以整个有效点集呈现一种上凸性质,即k j的斜率要大于j i的斜率。

这样,从左到右,斜率之间就是单调递减的了。当我们的最优解取得在j点的时候,那么k点不可能再取得比j点更优的解了,于是k点也可以排除。换句话说,j点之前的点全部不可能再比j点更优了,可以全部从解集中排除。

于是对于这题我们对于斜率优化做法可以总结如下:

1,用一个单调队列来维护解集。

2,假设队列中从头到尾已经有元素a b c。那么当d要入队的时候,我们维护队列的上凸性质,即如果g[d,c]<g[c,b],那么就将c点删除。直到找到g[d,x]>=g[x,y]为止,并将d点加入在该位置中。

3,求解时候,从队头开始,如果已有元素a b c,当i点要求解时,如果g[b,a]<sum[i],那么说明b点比a点更优,a点可以排除,于是a出队。最后dp[i]=getDp(q[head])。

#include<cstdio>
#define pf(x) ((x)*(x))
using namespace std;
const int N=5e5+5;
int n,sum[N],q[N];
int m,f[N];
inline int gety(int j,int k){
    return f[j]+pf(sum[j])-(f[k]+pf(sum[k]));
}
inline int getx(int j,int k){
    return sum[j]-sum[k]<<1;
}
int main(){
    while(~scanf("%d%d",&n,&m)){
        for(int i=1;i<=n;i++) scanf("%d",sum+i),sum[i]+=sum[i-1];
        int h=0,t=0;q[t]=0;
        for(int i=1;i<=n;i++){
            for(;h<t&&gety(q[h+1],q[h])<=sum[i]*getx(q[h+1],q[h]);h++);
            f[i]=f[q[h]]+pf(sum[i]-sum[q[h]])+m;
            for(;h<t&&gety(i,q[t])*getx(q[t],q[t-1])<=gety(q[t],q[t-1])*getx(i,q[t]);t--);
            q[++t]=i;
        }
        printf("%d\n",f[n]);
    }
    return 0;
}
时间: 2024-07-30 13:44:37

hdu3507 Print Article[斜率优化dp入门题]的相关文章

[hdu3507 Print Article]斜率优化dp入门

题意:需要打印n个正整数,1个数要么单独打印要么和前面一个数一起打印,1次打印1组数的代价为这组数的和的平方加上常数M.求最小代价. 思路:如果令dp[i]为打印前i个数的最小代价,那么有 dp[i]=min(dp[j]+(sum[i]-sum[j])2+M),j<i 直接枚举转移是O(n2)的,然而这个方程可以利用斜率优化将复杂度降到O(n). 根据斜率优化的一般思路,对当前考虑的状态i,考虑决策j和k(j<k),如果k比j优,那么根据转移方程有:dp[k]+(sum[i]-sum[k])2

HDU3507 Print Article (斜率优化DP基础复习)

传送门 大意:打印一篇文章,连续打印一堆字的花费是这一堆的和的平方加上一个常数M. 首先我们写出状态转移方程 :f[i]=f[j]+(sum[i]?sum[j])2+M; 设 j 优于 k. 那么有 f[j]+(sum[i]?sum[j])2<f[k]+(sum[i]?sum[k])2 移项得出 (f[j]+sum[j]2)?(f[k]+sum[j]2)2?(sum[j]+sum[k])<sum[i] 这就是一个很理想的斜率式了. #include<cstdio> #include

Print Article /// 斜率优化DP oj26302

题目大意: 经典题 数学分析 G(a,b)<sum[i]时 a优于b G(a,b)<G(b,c)<sum[i]时 b必不为最优 #include <bits/stdc++.h> #define N 500005 using namespace std; int n,m,dp[N],deq[N],sum[N]; // deq[]为单调队列 sum[]为数组的前缀和 int DP(int i,int j) { return dp[j]+m+(sum[i]-sum[j])*(sum

hdu 3507 Print Article —— 斜率优化DP

题目:http://acm.hdu.edu.cn/showproblem.php?pid=3507 设 f[i],则 f[i] = f[j] + (s[i]-s[j])*(s[i]-s[j]) + m 即 f[j] + s[j]*s[j] = 2*s[i]*s[j] + f[i] - s[i]*s[i] - m 于是维护下凸包即可: 写成 double 的 slp 总是不对,把分母乘到对面就对了... 代码如下: #include<iostream> #include<cstdio>

hdu3507之斜率优化DP入门

Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) Total Submission(s): 4780    Accepted Submission(s): 1437 Problem Description Zero has an old printer that doesn't work well sometimes. As it is antiqu

hdu 2993 MAX Average Problem (斜率优化dp入门)

MAX Average Problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 5855    Accepted Submission(s): 1456 Problem Description Consider a simple sequence which only contains positive integers as

HDU 3507 Print Article 斜率优化

Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 4810    Accepted Submission(s): 1451 Problem Description Zero has an old printer that doesn't work well sometimes. As it is antique

hdu3507Print Article(斜率优化dp)

Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 12824    Accepted Submission(s): 3967 Problem Description Zero has an old printer that doesn't work well sometimes. As it is antiqu

APIO2010 特别行动队 &amp; 斜率优化DP入门讲解

做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j] 可以变形为 f[i]=max((a*sum[j]^2-b*sum[j])-(2a*sum[j]*sum[i]))+(a*sum[i]^2+b*sum[i]+c) 我们可以把每个决策映射到平面上的一个点 其中x坐标为(a*sum[j]^2-b*sum[j])代表此决策的固定价值(与转移到哪无关) y坐标为-(2a*sum[j]) 代表此决策的潜在价值(