Pandas DataFrame学习笔记

对一个DF

r1  r2  r3

c1

c2

c3

选行:
  df[‘r1‘]
  df[‘r2‘:‘r2‘]  #包含r2
  df[df[‘c1‘]>5] #按条件选

选列:
  df[‘c1‘]
  df[[‘c2‘,‘c3‘]]
  df[‘c4‘]=5  #新列

任意区域:
  df.ix[df.c1>5,[‘c2‘,‘c3‘]]

排序:
  df.sort_index(by=[‘r2‘,‘r3‘],ascending=False)

运算:
  df<5  #得到bool型矩阵
  df[df<5]=0  #把所有小于5的元素置0

时间: 2024-10-13 01:01:13

Pandas DataFrame学习笔记的相关文章

pandas.DataFrame学习系列2——函数方法(1)

DataFrame类具有很多方法,下面做用法的介绍和举例. pandas.DataFrame学习系列2--函数方法(1) 1.abs(),返回DataFrame每个数值的绝对值,前提是所有元素均为数值型 1 import pandas as pd 2 import numpy as np 3 4 df=pd.read_excel('南京银行.xlsx',index_col='Date') 5 df1=df[:5] 6 df1.iat[0,1]=-df1.iat[0,1] 7 df1 8 Open

pandas.DataFrame学习系列1——定义及属性

定义: DataFrame是二维的.大小可变的.成分混合的.具有标签化坐标轴(行和列)的表数据结构.基于行和列标签进行计算.可以被看作是为序列对象(Series)提供的类似字典的一个容器,是pandas中主要的数据结构. 形式: class pandas.DataFrame(data=None, index=None, columns=None, dtype=None, copy=False) 参数含义: data : numpy ndarray(多维数组)(结构化或同质化的), dict(字典

pandas模块学习笔记1--数据结构

pandas是基于Numpy构建的. pandas的两个主要数据结构:Series和DataFrame. Series和DataFrame用的次数非常多,将其导入本地命名空间会更方便: from pandas import Series, DataFrame 一.Series Series是一种类似于一维数组的对象,由数据和数据标签(索引)组成,创建Series: obj = Series([1,2,3]) # 该情况下会自动创建整数型索引,以0开头:索引在左边,值在右边 print(obj.i

pandas库学习笔记(一)Series入门学习

Pandas基本介绍: pandas is an open source, BSD-licensed (permissive free software licenses) library providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language. 我们快速简单地看一下pandas中的基本数据结构,先从数据类型.索引.切片等

pandas 学习笔记

读者只需浏览一下本文的目录结构,我相信就已经掌握了1到2成的 pandas 知识. 本文的目的是建立一个大概的知识结构 在数据挖掘python阅读源码时,断断续续查阅了些 pandas 资料,并在源码中大致感受到了 pandas 在数据清理方面的方便性. 先将自己查阅的资料结合实际应用中常用到的方式,以学习笔记的形式整理出来.不会涉及到 pandas 的所有方面,细节知识还需自行查阅官方文档. 数据结构 Series: 一维数组,与Numpy中的一维array类似.二者与Python基本的数据结

学习笔记TF043:TF.Learn 机器学习Estimator、DataFrame、监督器Monitors

线性.逻辑回归.input_fn()建立简单两个特征列数据,用特证列API建立特征列.特征列传入LinearClassifier建立逻辑回归分类器,fit().evaluate()函数,get_variable_names()得到所有模型变量名称.可以使用自定义优化函数,tf.train.FtrlOptimizer(),可以任意改动传到LinearClassifier. 随机森林.包含多个决策树分类器及回归算法.处理不平衡分类资料集,极大平衡误差.Kaggle数据科学竞赛,延伸版XGBoost.

python数据分析入门学习笔记儿

学习利用python进行数据分析的笔记儿&下星期二内部交流会要讲的内容,一并分享给大家.博主粗心大意,有什么不对的地方欢迎指正~还有许多尚待完善的地方,待我一边学习一边完善~ 前言:各种和数据分析相关python库的介绍(前言1~4摘抄自<利用python进行数据分析>) 1.Numpy: Numpy是python科学计算的基础包,它提供以下功能(不限于此): (1)快速高效的多维数组对象naarray (2)用于对数组执行元素级计算以及直接对数组执行数学运算的函数 (3)用于读写硬盘

《R语言实战》学习笔记seventh

由于在准备软考中级数据库系统工程师外加巩固SQL Server 2012,所以拖了好久一直没继续学R 下去 所以今天重开R 的战事 这次是关于基本统计分析的内容,即关于用于生成基本的描述性统计量和推断统计量的R 函数 首先,将着眼于定量变量的位置和尺度的衡量方式 然后将是生成类别型变量的频数表和列联表的方法(以及连带的卡方检验) 接下来将考察连续型和有序型变量相关系数的多种形式 最后转而通过参数检验(t检验)和非参数检验(Mann-Whitney U检验.Kruskal-Wallis检验)方法研

多项式回归学习笔记

操作系统 : CentOS7.3.1611_x64 python版本:2.7.5 sklearn版本:0.18.2 tensorflow版本 :1.2.1 多项式的定义及展现形式 多项式(Polynomial)是代数学中的基础概念,是由称为不定元的变量和称为系数的常数通过有限次加减法.乘法以及自然数幂次的乘方运算得到的代数表达式. 多项式分为一元多项式和多元多项式,其中: 不定元只有一个的多项式称为一元多项式: 不定元不止一个的多项式称为多元多项式. 本文讨论的是一元多项式相关问题. 其一般形式