[BZOJ1095][ZJOI2007]Hide 捉迷藏

试题描述

捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子。某天,Jiajia、Wind和孩子们决定在家里玩捉迷藏游戏。他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N-1条走廊的分布使得任意两个屋子都互相可达。游戏是这样进行的,孩子们负责躲藏,Jiajia负责找,而Wind负责操纵这N个屋子的灯。在起初的时候,所有的灯都没有被打开。每一次,孩子们只会躲藏在没有开灯的房间中,但是为了增加刺激性,孩子们会要求打开某个房间的电灯或者关闭某个房间的电灯。为了评估某一次游戏的复杂性,Jiajia希望知道可能的最远的两个孩子的距离(即最远的两个关灯房间的距离)。 我们将以如下形式定义每一种操作: C(hange) i 改变第i个房间的照明状态,若原来打开,则关闭;若原来关闭,则打开。 G(ame) 开始一次游戏,查询最远的两个关灯房间的距离。

输入

第一行包含一个整数N,表示房间的个数,房间将被编号为1,2,3…N的整数。接下来N-1行每行两个整数a, b,表示房间a与房间b之间有一条走廊相连。接下来一行包含一个整数Q,表示操作次数。接着Q行,每行一个操作,如上文所示。

输出

对于每一个操作Game,输出一个非负整数到hide.out,表示最远的两个关灯房间的距离。若只有一个房间是关着灯的,输出0;若所有房间的灯都开着,输出-1。

输入示例

8
1 2
2 3
3 4
3 5
3 6
6 7
6 8
7
G
C 1
G
C 2
G
C 1
G

输出示例

4
3
3
4

数据规模及约定

对于100%的数据, N ≤100000, M ≤500000。

题解

这题一看就肯定是动态点分治。

然而 sb 的我并没有自己想出具体做法。。。

建立好重心树后,我们维护三种堆:(以下的描述都是在重心树上的,与原树无关)

1. 每个节点一个堆维护子树中所有节点到它父亲的距离;

2. 每个节点一个堆维护所有儿子的子树到自己的最大距离(维护的是这些最大距离的集合);

3. 一个堆维护每个节点对应的子树中经过它的最长链(维护的是这些最长链的集合)。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <stack>
#include <vector>
#include <queue>
#include <cstring>
#include <string>
#include <map>
#include <set>
using namespace std;

const int BufferSize = 1 << 16;
char buffer[BufferSize], *Head, *Tail;
inline char Getchar() {
	if(Head == Tail) {
		int l = fread(buffer, 1, BufferSize, stdin);
		Tail = (Head = buffer) + l;
	}
	return *Head++;
}
int read() {
	int x = 0, f = 1; char c = Getchar();
	while(!isdigit(c)){ if(c == ‘-‘) f = -1; c = Getchar(); }
	while(isdigit(c)){ x = x * 10 + c - ‘0‘; c = Getchar(); }
	return x * f;
}

#define maxn 100010
#define maxm 200010
#define maxlog 18

int n, m, head[maxn], nxt[maxm], to[maxm];

void AddEdge(int a, int b) {
	to[++m] = b; nxt[m] = head[a]; head[a] = m;
	swap(a, b);
	to[++m] = b; nxt[m] = head[a]; head[a] = m;
	return ;
}

int mnd[maxlog][maxn<<1], clo, dfn[maxn], dep[maxn], Log[maxn<<1];
void build(int u, int pa) {
	dfn[u] = ++clo;
	mnd[0][clo] = dep[u];
	for(int e = head[u]; e; e = nxt[e]) if(to[e] != pa)
		dep[to[e]] = dep[u] + 1, build(to[e], u), mnd[0][++clo] = dep[u];
	return ;
}
void rmq_init() {
	Log[1] = 0;
	for(int i = 2; i <= clo; i++) Log[i] = Log[i>>1] + 1;
	for(int j = 1; (1 << j) <= clo; j++)
		for(int i = 1; i + (1 << j) - 1 <= clo; i++)
			mnd[j][i] = min(mnd[j-1][i], mnd[j-1][i+(1<<j-1)]);
	return ;
}
int cdist(int a, int b) {
	int l = dfn[a], r = dfn[b];
	if(l > r) swap(l, r);
	int t = Log[r-l+1];
	return dep[a] + dep[b] - (min(mnd[t][l], mnd[t][r-(1<<t)+1]) << 1);
}

int rt, size, f[maxn], siz[maxn];
bool vis[maxn];
void getroot(int u, int pa) {
	siz[u] = 1; f[u] = 0;
	for(int e = head[u]; e; e = nxt[e]) if(to[e] != pa && !vis[to[e]]) {
		getroot(to[e], u);
		siz[u] += siz[to[e]];
		f[u] = max(f[u], siz[to[e]]);
	}
	f[u] = max(f[u], size - siz[u]);
	if(f[rt] > f[u]) rt = u;
	return ;
}
void dfs(int u, int pa) {
	siz[u] = 1;
	for(int e = head[u]; e; e = nxt[e]) if(to[e] != pa && !vis[to[e]])
		dfs(to[e], u), siz[u] += siz[to[e]];
	return ;
}
int fa[maxn];
void solve(int u) {
	vis[u] = 1;
	for(int e = head[u]; e; e = nxt[e]) if(!vis[to[e]]) {
		dfs(to[e], u);
		f[rt = 0] = size = siz[to[e]]; getroot(to[e], u);
		fa[rt] = u; solve(rt);
	}
	return ;
}

priority_queue <int> tofa[maxn], tofa_del[maxn], son[maxn], son_del[maxn], ans, ans_del;
bool has[maxn];
void tofadel(int u, int d) {
	tofa_del[u].push(d);
	while(!tofa[u].empty() && !tofa_del[u].empty() && tofa[u].top() == tofa_del[u].top())
		tofa[u].pop(), tofa_del[u].pop();
	return ;
}
void sondel(int u, int d) {
	son_del[u].push(d);
	while(!son[u].empty() && !son_del[u].empty() && son[u].top() == son_del[u].top())
		son[u].pop(), son_del[u].pop();
	return ;
}
void ansdel(int d) {
	ans_del.push(d);
	while(!ans.empty() && !ans_del.empty() && ans.top() == ans_del.top())
		ans.pop(), ans_del.pop();
	return ;
}
int upans(int u) {
	if(son[u].empty()) return -1;
	int t1 = son[u].top(); son[u].pop();
	while(!son[u].empty() && !son_del[u].empty() && son[u].top() == son_del[u].top())
		son[u].pop(), son_del[u].pop();
	if(son[u].empty()){ son[u].push(t1); return -1; }
	int t2 = son[u].top();
	son[u].push(t1);
	return t1 + t2;
}
void update(int s) {
	int tmp = upans(s);
	if(tmp >= 0) ansdel(tmp);
	if(!has[s]) son[s].push(0);
	else sondel(s, 0);
	tmp = upans(s);
	if(tmp >= 0) ans.push(tmp);
	for(int u = s; fa[u]; u = fa[u]) {
		int d = cdist(s, fa[u]);
		tmp = upans(fa[u]);
		if(tmp >= 0) ansdel(tmp);
		if(!has[s]) {
			if(tofa[u].empty()) son[fa[u]].push(d);
			else if(tofa[u].top() < d) sondel(fa[u], tofa[u].top()), son[fa[u]].push(d);
			tofa[u].push(d);
		}
		else {
			tofadel(u, d);
			if(tofa[u].empty()) sondel(fa[u], d);
			else if(tofa[u].top() < d) sondel(fa[u], d), son[fa[u]].push(tofa[u].top());
		}
		tmp = upans(fa[u]);
		if(tmp >= 0) ans.push(tmp);
	}
	has[s] ^= 1;
	return ;
}

int main() {
	n = read();
	for(int i = 1; i < n; i++) {
		int a = read(), b = read();
		AddEdge(a, b);
	}

	build(1, 0);
	rmq_init();
	f[rt = 0] = size = n; getroot(1, 0);
	solve(rt);
	for(int i = 1; i <= n; i++) update(i);

	int q = read();
	while(q--) {
		char cmd = Getchar();
		while(!isalpha(cmd)) cmd = Getchar();
		if(cmd == ‘G‘) printf("%d\n", ans.empty() ? -1 : ans.top());
		else update(read());
	}

	return 0;
}

1A 了好爽 2333333

时间: 2024-10-04 06:36:34

[BZOJ1095][ZJOI2007]Hide 捉迷藏的相关文章

[bzoj1095][ZJOI2007]Hide 捉迷藏 点分树,动态点分治

[bzoj1095][ZJOI2007]Hide 捉迷藏 2015年4月20日7,8876 Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N-1条走廊的分布使得任意两个屋子都互相可达.游戏是这样进行的,孩子们负责躲藏,Jiajia负责找,而Wind负责操纵这N个屋子的灯.在起初的时候,所有的灯都没有被打开.每一次,孩子们只会躲藏在

bzoj千题计划245:bzoj1095: [ZJOI2007]Hide 捉迷藏

http://www.lydsy.com/JudgeOnline/problem.php?id=1095 查询最远点对,带修改 显然可以用动态点分治 对于每个点,维护两个堆 堆q1[x] 维护 点分树x的子树中,所有黑点到x的点分树中父节点的距离 堆q2[x]维护 点分树x的子节点的堆q1的堆顶,即若y是x在点分树中的子节点,则q2[x].push(q1[y].top()) 再来维护一个全局的堆Q,维护所有q2的堆顶,即Q.push(q2[x].top()) #include<cmath> #

bzoj1095: [ZJOI2007]Hide 捉迷藏 动态点分治学习

好迷啊...感觉动态点分治就是个玄学,蜜汁把树的深度缩到logn (静态)点分治大概是递归的时候分类讨论: 1.答案经过当前点,暴力(雾)算 2.答案不经过当前点,继续递归 由于原树可以长的奇形怪状(菊花啊..链啊..扫把啊..)这就导致各种方法都会被卡 于是通过每次找重心保证最大深度 动态怎么解决呢? 不妨考虑线段树是二分的固态版本(只可意会),那么我们把每次找到的重心固定下来长成一棵树就可以把点分治凝固(不可言传) 原来点分治该维护什么现在就维护什么... (事实上我并没有写过静态点分治..

bzoj千题计划252:bzoj1095: [ZJOI2007]Hide 捉迷藏

http://www.lydsy.com/JudgeOnline/problem.php?id=1095 点分树+堆 请去看 http://www.cnblogs.com/TheRoadToTheGold/p/8463436.html 线段树维护括号序列 对树进行dfs,入栈时加一个左括号,出栈时加一个右括号,那么书上两点间的距离=括号序列两点间不匹配括号数 例: 树1--2--3,2为根 括号序列为 (2(3)(1)) 2和1的距离 为 ()( = 1, 3和1的距离为 )( =2 具体怎么维

【BZOJ1095】[ZJOI2007]Hide 捉迷藏 动态树分治+堆

[BZOJ1095][ZJOI2007]Hide 捉迷藏 Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N-1条走廊的分布使得任意两个屋子都互相可达.游戏是这样进行的,孩子们负责躲藏,Jiajia负责找,而Wind负责操纵这N个屋子的灯.在起初的时候,所有的灯都没有被打开.每一次,孩子们只会躲藏在没有开灯的房间中,但是为了增加刺激

【BZOJ 1095】 [ZJOI2007]Hide 捉迷藏

1095: [ZJOI2007]Hide 捉迷藏 Time Limit: 40 Sec  Memory Limit: 162 MB Submit: 1232  Solved: 501 [Submit][Status] Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N-1条走廊的分布使得任意两个屋子都互相可达.游戏是这样进行的,孩子

bzoj 1095: [ZJOI2007]Hide 捉迷藏

Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩 捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N-1条走廊的分布使得任意两个屋 子都互相可达.游戏是这样进行的,孩子们负责躲藏,Jiajia负责找,而Wind负责操纵这N个屋子的灯.在起初的 时候,所有的灯都没有被打开.每一次,孩子们只会躲藏在没有开灯的房间中,但是为了增加刺激性,孩子们会要 求打开某个房间的电灯或者关闭某个房间

【BZOJ1095】 Hide 捉迷藏

Time Limit: 4000 ms   Memory Limit: 256 MB Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏.他们的家很大且构造很奇特,由N个屋子和N-1条双向走廊组成,这N-1条走廊的分布使得任意两个屋子都互相可达.游戏是这样进行的,孩子们负责躲藏,Jiajia负责找,而Wind负责操纵这N个屋子的灯.在起初的时候,所有的灯都没有被打开.每一次,孩子们只会躲藏在没有开

BZOJ 1095 ZJOI2007 Hide 捉迷藏 动态树分治+堆

题目大意:给定一棵树,一开始每个点都是黑点,多次改变某个点的状态或询问距离最远的两个黑点的距离 <珍爱生命远离STL可是我还是可耻地用了STL系列> 传说中的动态树分治...其实并没有那么神嘛= = ↑别听这傻瓜瞎说这货被STL卡了一天QAQ 我们把分治过程中遍历过的重心都连起来 上一层的重心链接下一层的重心 可以得到一棵新的树 下面我们开始讨论这棵新树 显然这棵树的高度不会超过O(logn) 然后我们每个节点开两个堆 第一个堆记录子树中所有节点到父亲节点的距离 第二个堆记录所有子节点的堆顶