BZOJ 2299 向量(裴蜀定理)

题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y)。

实际上前四个向量能拼出(ma,nb)(m%2=n%2).后四个向量拼出(xb,ya)(x%2=y%2).

这样可以枚举这四个未知数在模二意义下的解。这两个向量相加为(ma+xb,nb+ya).

对于ma+xb=X.根据系数的奇偶性,如果有系数为奇数,可使得等式两边都减去一个数使得系数都为偶数,这样再同除以二。

就是一般的用裴蜀定理来判断这类方程是否有解的过程了。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-8
# define MOD 30031
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int x=0,f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
const int N=1000005;
//Code begin...
bool check(LL x, LL y, LL gcd){return x%gcd==0&&y%gcd==0;}
int main ()
{
    int T;
    LL a, b, x, y, gcd;
    scanf("%d",&T);
    while (T--) {
        scanf("%lld%lld%lld%lld",&a,&b,&x,&y);
        if (a==0&&b==0) {puts(x==0&&y==0?"Y":"N"); continue;}
        if (a==0||b==0) gcd=(a==0?b:a);
        else gcd=__gcd(a,b);
        gcd*=2;
        if (check(x,y,gcd)||check(x-a,y-b,gcd)||check(x-b,y-a,gcd)||check(x-a-b,y-a-b,gcd)) puts("Y");
        else puts("N");
    }
    return 0;
}

时间: 2024-12-28 09:34:40

BZOJ 2299 向量(裴蜀定理)的相关文章

bzoj 2299 [HAOI2011]向量 裴蜀定理

bzoj 2299 [HAOI2011]向量 裴蜀定理 题意: 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 限制: -2*1e9 <= a,b,x,y <= 2*1e9 思路: 题目的操作可以化为: 1. x +- 2a; 2. y +- 2a; 3. x +- 2b; 4. y +- 2b; 5. x + a && y

【BZOJ-2299】向量 裴蜀定理 + 最大公约数

2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status][Discuss] Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 说明:这里的拼就是使得你选出的向量之和为(x,y)

[BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)

[BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x,y). 说明:这里的拼就是使得你选出的向量之和为(x,y) Input 第一行数组组数t,(t<=50000) 接下来t行每行四个整数a,b,x,y (-2109<=a,b,x,y<=2109) Output t行每行为Y

BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Status][Discuss] Description jyy就一直想着尽快回地球,可惜他飞船的燃料不够了. 有一天他又去向火星人要燃料,这次火星人答应了,要jyy用飞船上的瓶子来换.jyy 的飞船上共有 N个瓶子(1<=N<=1000) ,经过协商,火星人只要其中的K 个 . jyy 将 K个瓶子交给

【BZOJ】1441: Min(裴蜀定理)

http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数论>上边写得很清楚:如果对于任意d|ai,有d|sum{aixi} 所以求出d就行了...显然gcd.. #include <cstdio> #include <cstring> #include <cmath> #include <string> #in

[BZOJ1441&amp;BZOJ2257&amp;BZOJ2299]裴蜀定理

裴蜀定理 对于整系数方程ax+by=m,设d =(a,b) 方程有整数解当且仅当d|m 这个定理实际上在之前学习拓展欧几里得解不定方程的时候就已经运用到 拓展到多元的方程一样适用 BZOJ1441 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 该方程有解当且仅当gcd(A1...AN)|s 要求s的值最小,那么答案就是gcd(A1..AN) BZOJ2257 jyy就一直想着尽快回地球,可惜他飞船的燃料不够了.有一天他又去向

贝祖定理(裴蜀定理)

在数论中,裴蜀定理是一个关于最大公约数(或最大公约式)的定理:若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by=m中的m一定是d的倍数. 特别地,一定存在整数x,y,使ax+by=d成立,且不止一组,例如(12,42)=6,则方程12x + 42y = 6有解,事实上有(-3)×12 + 1×42 = 6及4×12 + (-1)×42 = 6. 而ax+by=1是a,b两数互质的充要条件,同样地,x,y不止一组. 参考:http://www.cnblogs.com/tekk

【BZOJ-1441】Min 裴蜀定理 + 最大公约数

1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] Description 给出n个数(A1...An)现求一组整数序列(X1...Xn)使得S=A1*X1+...An*Xn>0,且S的值最小 Input 第一行给出数字N,代表有N个数下面一行给出N个数 Output S的最小值 Sample Input 24059 -1782 Sample Outpu

扩展欧几里得算法、裴蜀定理与乘法逆元

扩展欧几里得算法 扩展欧几里得算法(扩O)能在求gcd(a,b)的同时求出丢番图方程ax+by=gcd(a, b)的解. 然而怎么求呢?我们观察gcd(a, b)=gcd(b, a%b),所以设如下两个方程: ax+by = gcd(a,b) = d: bx'+(a%b)y' = gcd(b,a%b): 明显gcd(a,b) = gcd(b,a%b),也就是ax+by = bx'+(a%b)y'. 为了求得x与y,我们需要保证a,b不变,所以:ax+by = bx'+(a%b)y' = bx'+