SPSS数据分析—基于最优尺度变换的典型相关分析

传统的典型相关分析只能考虑变量之间的线性相关情况,且必须为连续变量,而我们依然可以使用最优尺度变换来拓展其应用范围,使其可以分析非线性相关、数据为分类数据等情况,并且不再仅限于两个变量间的分析,

虽然具体算法非常复杂,但是过程却只要两步,首先对变量进行最优尺度变换,然后对其进行典型相关分析。

我们还是以之前的多重对应分析的案例数据进行分析

过程还是在分析—降维—最佳尺度






时间: 2024-12-28 05:58:25

SPSS数据分析—基于最优尺度变换的典型相关分析的相关文章

SPSS数据分析—最优尺度回归

在之前介绍的线性回归模型中,有一个隐含的假设是自变量均为连续变量,但实际上自变量有时候是分类变量,类似于方差分析中的因素,这种分类自变量在回归分析中,也默认作为连续变量使用,这就会产生一个问题,如果是无序分类变量,那么各类别间没有高低之分,每变化一个单位,对于因变量的影响是相同的,无法分析当中的趋势,虽然可以使用哑变量,但是当分类变量过多或每个变量的类别水平过多时,这种方法非常繁琐,此外,当类别较多时,可能会存在某几个类别对因变量的作用相似,这是可分析的点,但是传统线性模型却将此信息忽略,造成信

多维尺度变换MDS(Multidimensional Scaling)

流形学习(Manifold Learning)是机器学习中一大类算法的统称,而MDS就是其中非常经典的一种方法. 多维尺度变换是一种在低维空间展示"距离"数据结构的多元数据分析技术,是一种将多维空间的研究对象简化到低维空间进行定位.分析和归类,同时又保留对象间原始关系的数据分析方法.多维尺度变换算法集中于保留高维空间中的"相似度"信息,而在一般的问题解决的过程中,这个"相似度"通常用欧式距离来定义. 通俗来讲,就是将多维数据映射到低维空间,同时保

快速掌握SPSS数据分析

SPSS难吗?无非就是数据类型的区别后,就能理解应该用什么样的分析方法,对应着分析方法无非是找一些参考资料进行即可.甚至在线网页SPSS软件直接可以将数据分析结果指标人工智能地分析出来,这有多难呢?本文章将周老师(统计学专家)8年的数据分析经验浓缩,便于让不会数据分析的同学,在学习数据分析的过程中可以少走弯路,树立数据分析价值观,以及以数据进行决策的思维意识,并且可以快速的掌握数据分析.本文章分为四个板块进行说明,一是数据分析思维的培养.二是数据间的几类关系情况.三是数据分析方法的选择.四是数据

SPSS数据分析—多维尺度分析

在市场研究中,有一种分析是研究消费者态度或偏好,收集的数据是某些对象的评分数据,这些评分数据可以看做是对象间相似性或差异性的表现,也就是一种距离,距离近的差异性小,距离远的差异性大.而我们的分析目的也是想查看这些对象间的差异性或相似性情况,此时由于数据的组成形式不一样,因此不能使用对应分析,而需要使用一种专门分析此问题的方法——多维尺度分析(MDS模型).多维尺度分析和对应分析类似,也是通过可视化的图形阐述结果,并且也是一种描述性.探索性数据分析方法. 基于以上,我们可以得知,多维尺度分析经常使

SPSS数据分析—非线性回归

线性回归的首要满足条件是因变量与自变量之间呈线性关系,之后的拟合算法也是基于此,但是如果碰到因变量与自变量呈非线性关系的话,就需要使用非线性回归进行分析. SPSS中的非线性回归有两个过程可以调用,一个是分析—回归—曲线估计,另一个是分析—回归—非线性,两种过程的思路不同,这也是非线性回归的两种分析方法,前者是通过变量转换,将曲线线性化,再使用线性回归进行拟合:后者则是直接按照非线性模型进行拟合. 我们按照两种方法分别拟合同一组数据,将结果进行比较. 分析—回归—曲线估计 变量转换的方法简单易行

<颠覆大数据分析 基于StormSpark等Hadoop替代技术的实时应用>

为什么要超越Hadoop MapReduce Hadoop的适用范围 Hadoop缺乏对象数据库连接(ODBC) Hadoop不适合所有类型的应用程序 hadoop不适合分片数据 Hadoop不适合迭代式计算 海量数据分析所需的计算范式分类(7大任务) 基础分析 线性代数计算 广义的多体问题 图论问题 优化 积分 比对问题 Hadoop非常适合第一类基础分析,对于其他问题,较简单或者小型的任务都是Hadoop可解的. 于是有了Spark,spark可以看做是大数据领域下一个数据处理的Hadoop

中国移动实时数据分析-基于spark+kafka+flume

这两天主要是做了中国移动的实时数据分析一个小项目(可以说是demo了),这里记录下来整个过程里面遇到的坑,首先安装好flume,kafka,spark(基于代码本地运行可以不安装),redis,zookeeper 主要是为了熟悉一下整个的一个spark-streaming的一个整个流程,还有就是了解调优的地方. 上述假设已经安装好了相应的组件,然后就开始正式的踩坑之路: 1.编写一个java程序去读取原始数据文件,模拟1s进行文件的插入一行,原始的数据文件格式如下: 坑a .整个的数据格式是js

SPSS数据分析—判别分析

判别分析作为一种多元分析技术应用相当广泛,和其他多元分析技术不同,判别分析并没有将降维作为主要任务,而是通过建立判别函数来概括各维度之间的差异,并且根据这个判别函数,将新加入的未知类别的样本进行归类,从这个角度讲,判别分析是从另一个角度对数据进行归类. 判别分析由于要建立判别函数,因此和回归分析类似,也有因变量和自变量,并且因变量应为分类变量,这样才能够最终将数据进行归类,而自变量可以是任意尺度变量,分类变量需要设置为哑变量. 既然和回归分析类似,那么判断分析也有一定的适用条件,这些适用条件也和

SPSS数据分析—信度分析

测量最常用的是使用问卷调查.信度分析主要就是分析问卷测量结果的稳定性,如果多次重复测量的结果都很接近,就可以认为测量的信度是高的.与信度相对应的概念是效度,效度是指测量值和真实值的接近程度.二者的区别是:信度只是描述测量工具的准确性,而效度描述测量工具的有效性,效度高信度一定高(有效一定准确),而信度高,效度不一定高(准确不一定有效) 基于信度分析而产生的测量理论分为两种,一种是真分数测量理论,另一种是概化理论真分数理论认为信度可以用以下公式表达:X=T+E,X为实测分数,T为真分数,E为随机误