48、tensorflow入门二,线性模型的拟合

import tensorflow as tf
import numpy as np#生成2维的100个0-1的随机数
x_data = np.float32(np.random.rand(2,100))计算内积,x_data一共100个值,每个值都是2维的向量,用[0.1,0.2]和每一个向量计算数量积,然后加起来
x_data=

[[ 0.27559635 0.35930911 0.77030689 0.71818703 0.49122271 0.43190494
0.644674 0.32078174 0.64300877 0.81156862 0.30409896 0.56623858
0.97026539 0.60468578 0.34658566 0.86189109 0.5117926 0.46588144
0.27591956 0.49946061 0.47744861 0.80954593 0.10624354 0.80820572
0.24388497 0.75275064 0.11153043 0.01847375 0.70894343 0.86511648
0.05999189 0.94242656 0.35399687 0.53131646 0.80690706 0.28856653
0.2685678 0.86655128 0.49340782 0.84330899 0.26634833 0.94808429
0.32813659 0.60548925 0.37914801 0.93819922 0.16300483 0.28346273
0.25481561 0.59326059 0.64435166 0.71002674 0.47835174 0.16478723
0.83618289 0.89197201 0.77212745 0.83254766 0.1176443 0.45999372
0.17508474 0.99125117 0.19204263 0.88548642 0.16025347 0.58622926
0.14167576 0.6784007 0.77483946 0.90998834 0.79064935 0.76124579
0.11255023 0.63665706 0.84133714 0.01388079 0.7478959 0.34365693
0.66228282 0.56429321 0.97419363 0.46427366 0.71639329 0.67420006
0.72603422 0.35240087 0.43481046 0.04478104 0.83910578 0.03852031
0.63502115 0.54327303 0.05116724 0.75744271 0.23107423 0.25379685
0.1543453 0.65174055 0.60880935 0.41448417]
[ 0.53852242 0.24170624 0.51843584 0.41295227 0.22256 0.05581184
0.42046902 0.49984431 0.83284378 0.44403863 0.43289256 0.04277489
0.97858369 0.32724616 0.69393569 0.80431139 0.20591183 0.10109164
0.07850602 0.61202133 0.04476574 0.99151891 0.1714984 0.83303201
0.1769124 0.97038633 0.71856993 0.97560126 0.80447757 0.48544171
0.95302963 0.21392477 0.72407377 0.32749009 0.87037027 0.23632777
0.09344739 0.49172315 0.27751547 0.3205907 0.42732051 0.0938397
0.65851027 0.75118226 0.30484736 0.69336241 0.96847987 0.08743072
0.5060789 0.128803 0.12509818 0.77400607 0.99729323 0.25656971
0.28877217 0.26310787 0.22661451 0.38361222 0.64689898 0.26246113
0.41836309 0.96913052 0.34863174 0.26865834 0.96321774 0.02932074
0.51096094 0.93037766 0.3862699 0.77660888 0.50103205 0.35242727
0.96469277 0.71796703 0.90261179 0.9502635 0.2554118 0.41087386
0.13807607 0.10848427 0.27238116 0.81126028 0.35296583 0.5478636
0.35726911 0.54948765 0.3683508 0.57419771 0.28177765 0.80673724
0.14792147 0.5277251 0.17725706 0.5937981 0.86571193 0.09969555
0.92383957 0.95939624 0.76108253 0.30095646]]

y_data = 

[ 0.43526412 0.38427216 0.48071786 0.45440916 0.39363427 0.35435286
0.4485612 0.43204704 0.53086963 0.46996459 0.41698841 0.36517884
0.59274328 0.42591781 0.4734457 0.54705139 0.39236163 0.36680647
0.34329316 0.47235033 0.35669801 0.57925838 0.34492403 0.54742697
0.35977098 0.56935233 0.45486703 0.49696763 0.53178986 0.48359999
0.49660512 0.43702761 0.48021444 0.41862966 0.55476476 0.37612221
0.34554626 0.48499976 0.40484388 0.44844904 0.41209894 0.41357637
0.46451571 0.51078538 0.39888427 0.53249241 0.50999646 0.34583242
0.42669734 0.38508666 0.3894548 0.52580389 0.54729382 0.36779267
0.44137272 0.44181877 0.42253565 0.45997721 0.44114423 0.3984916
0.40118109 0.59295122 0.38893061 0.44228031 0.50866889 0.36448708
0.41635976 0.5539156 0.45473793 0.54632061 0.47927135 0.44661003
0.50419358 0.50725911 0.56465607 0.49144078 0.42587195 0.41654046
0.3938435 0.37812617 0.45189559 0.50867942 0.4422325 0.47699273
0.44405724 0.44513762 0.41715121 0.41931765 0.44026611 0.46519948
0.39308641 0.45987232 0.34056814 0.49450389 0.49624981 0.34531879
0.50020244 0.5570533 0.51309744 0.40163971]

y_data = np.dot([0.100,0.200],x_data) + 0.300
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1,2],-1.0,1.0))
y = tf.matmul(W,x_data) + b
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for step in np.arange(0,201):
    sess.run(train)
    if step % 20 == 0:
        print(step,sess.run(W),sess.run(b))

结果如下所示

>>> import testTensorflow
0 [[ 0.61865866 0.54848659]] [-0.35512698]
20 [[ 0.27226886 0.31722128]] [ 0.14856057]
40 [[ 0.15020847 0.23340638]] [ 0.25623968]
60 [[ 0.11460328 0.20955895]] [ 0.28735051]
80 [[ 0.10424114 0.20274341]] [ 0.29634258]
100 [[ 0.10123044 0.20078911]] [ 0.2989423]
120 [[ 0.10035671 0.20022736]] [ 0.29969406]
140 [[ 0.10010336 0.20006558]] [ 0.2999115]
160 [[ 0.10002995 0.20001893]] [ 0.29997438]
180 [[ 0.10000868 0.20000547]] [ 0.29999259]
200 [[ 0.10000249 0.20000155]] [ 0.29999787]
>>>

时间: 2024-10-12 14:02:55

48、tensorflow入门二,线性模型的拟合的相关文章

TensorFlow入门:线性回归

随机.mini-batch.batch(见最后解释) 在每个 epoch 送入单个数据点.这被称为随机梯度下降(stochastic gradient descent).我们也可以在每个 epoch 送入一堆数据点,这被称为 mini-batch 梯度下降,或者甚至在一个 epoch 一次性送入所有的数据点,这被称为 batch 梯度下降. 转自:https://cloud.tencent.com/developer/article/1004866 TensorFlow基本使用 TensorFl

tensorflow入门(1):构造线性回归模型

今天让我们一起来学习如何用TF实现线性回归模型.所谓线性回归模型就是y = W * x + b的形式的表达式拟合的模型. 我们先假设一条直线为 y = 0.1x + 0.3,即W = 0.1,b = 0.3,然后利用随机数在这条直线附近产生1000个随机点,然后利用tensorflow构造的线性模型去学习,最后对比模型所得的W和b与真实值的差距即可. (某天在浏览Github的时候,发现了一个好东西,Github上有一个比较好的有关tensorflow的Demo合集,有注释有源代码非常适合新手入

转:TensorFlow入门(六) 双端 LSTM 实现序列标注(分词)

http://blog.csdn.net/Jerr__y/article/details/70471066 欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-04-19 前言 本例子主要介绍如何使用 TensorFlow 来一步一步构建双端 LSTM 网络(听名字就感觉好腻害的样子),并完成序列标注的问题.先声明一下,本文中采用的方法主要参考了[中文分词系列] 4. 基于双向LSTM的seq2seq字标注这篇文章.该文章用

tensorflow入门教程

1. LSTM 大学之道,在明明德的博客: (译)理解 LSTM 网络 (Understanding LSTM Networks by colah) TensorFlow入门(五)多层 LSTM 通俗易懂版 TensorFlow入门(三)多层 CNNs 实现 mnist分类 另一个博客,写的代码很好: TensorFlow 实现多层 LSTM 的 MNIST 分类 + 可视化 博客:写的很好 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 博客: Tensorflow

Docker入门二:容器管理

Docker入门二:容器管理 LinuxDocker time: 2019-12-3 容器管理 docker常用命令 注: 命令中的CONTAINER,可以是conainer_id,也可以是container name docker system info # 查看docker系统信息 docker container ls -a 查看当前已经创建的container docker container ls: -a 显示所有容器 -q 仅显示ID -s 显示container的文件大小 快速启动

[WebGL入门]二十,绘制立体模型(圆环体)

注:文章译自http://wgld.org/,原作者杉本雅広(doxas),文章中如果有我的额外说明,我会加上[lufy:],另外,鄙人webgl研究还不够深入,一些专业词语,如果翻译有误,欢迎大家指正. 本次的demo的运行结果 立体的模型 这次稍微喘口气,开始绘制立体模型.这里说的[喘口气]是指本次的文章中没有出现任何新的技术知识点.只是利用到现在为止所介绍过的内容,来绘制一个立体的圆环体.到现在为止,只绘制了三角形和四边形,当然,在三维空间中绘制简单的多边形也没什么不对,但是缺点儿说服力.

kafka入门二:Kafka的设计思想、理念

本节主要从整体角度介绍Kafka的设计思想,其中的每个理念都可以深入研究,以后我可能会发专题文章做深入介绍,在这里只做较概括的描述以便大家更好的理解Kafka的独特之处.本节主要涉及到如下主要内容: Kafka设计基本思想 Kafka中的数据压缩 Kafka消息转运过程中的可靠性 Kafka集群镜像复制 Kafka 备份机制 一.kafka由来 由于对JMS日常管理的过度开支和传统JMS可扩展性方面的局限,LinkedIn(www.linkedin.com)开发了Kafka以满足他们对实时数据流

Netty入门二:开发第一个Netty应用程序

    既然是入门,那我们就在这里写一个简单的Demo,客户端发送一个字符串到服务器端,服务器端接收字符串后再发送回客户端. 2.1.配置开发环境 1.安装JDK 2.去官网下载jar包 (或者通过pom构建) 2.2.认识下Netty的Client和Server 一个Netty应用模型,如下图所示,但需要明白一点的是,我们写的Server会自动处理多客户端请求,理论上讲,处理并发的能力决定于我们的系统配置及JDK的极限. Client连接到Server端 建立链接发送/接收数据 Server端

Thinkphp入门 二 —空操作、空模块、模块分组、前置操作、后置操作、跨模块调用(46)

原文:Thinkphp入门 二 -空操作.空模块.模块分组.前置操作.后置操作.跨模块调用(46) [空操作处理] 看下列图: 实际情况:我们的User控制器没有hello()这个方法 一个对象去访问这个类不存在的方法,那么它会去访问”魔术方法__call()” 用户访问一个不存在的操作—>解决:给每个控制器都定义个_empty()方法来处理 第二个解决方法:定义一个空操作 [空模块处理] 我们使用一个类,但是现在这个类还没有被include进来. 我们可以通过自动加载机制处理__autoloa