OTOCI(bzoj 1180)

Description

给出n个结点以及每个点初始时对应的权值wi。起始时点与点之间没有连边。有3类操作: 1、bridge A B:询问结点A与结点B是否连通。如果是则输出“no”。否则输出“yes”,并且在结点A和结点B之间连一条无向边。 2、penguins A X:将结点A对应的权值wA修改为X。 3、excursion A B:如果结点A和结点B不连通,则输出“impossible”。否则输出结点A到结点B的路径上的点对应的权值的和。给出q个操作,要求在线处理所有操作。数据范围:1<=n<=30000, 1<=q<=300000, 0<=wi<=1000。

Input

第一行包含一个整数n(1<=n<=30000),表示节点的数目。第二行包含n个整数,第i个整数表示第i个节点初始时对应的权值。第三行包含一个整数q(1<=n<=300000),表示操作的数目。以下q行,每行包含一个操作,操作的类别见题目描述。任意时刻每个节点对应的权值都是1到1000的整数。

Output

输出所有bridge操作和excursion操作对应的输出,每个一行。

Sample Input

5

4 2 4 5 6

10

excursion 1 1

excursion 1 2

bridge 1 2

excursion 1 2

bridge 3 4

bridge 3 5

excursion 4 5

bridge 1 3

excursion 2 4

excursion 2 5

Sample Output

4

impossible

yes

6

yes

yes

15

yes

15

16

#include<cstdio>
#include<iostream>
#define N 30010
using namespace std;
int fa[N],son[N][2],rev[N],v[N],sum[N],st[N],n,m;
bool isroot(int x){
    return son[fa[x]][0]!=x&&son[fa[x]][1]!=x;
}
void pushup(int x){
    sum[x]=sum[son[x][0]]+sum[son[x][1]]+v[x];
}
void pushdown(int x){
    if(!rev[x]) return;
    rev[son[x][0]]^=1;rev[son[x][1]]^=1;
    swap(son[x][0],son[x][1]);rev[x]=0;
}
void rotate(int x){
    int y=fa[x],z=fa[y],l,r;
    if(son[y][0]==x) l=0;else l=1;r=l^1;
    if(!isroot(y)){
        if(son[z][0]==y) son[z][0]=x;
        else son[z][1]=x;
    }
    fa[x]=z;fa[y]=x;fa[son[x][r]]=y;
    son[y][l]=son[x][r];son[x][r]=y;
    pushup(y);pushup(x);
}
void splay(int x){
    int top=0;st[++top]=x;
    for(int i=x;!isroot(i);i=fa[i])
        st[++top]=fa[i];
    for(int i=top;i;i--) pushdown(st[i]);
    while(!isroot(x)){
        int y=fa[x],z=fa[y];
        if(!isroot(y)){
            if((son[z][0]==y)^(son[y][0]==x)) rotate(x);
            else rotate(y);
        }
        rotate(x);
    }
}
void access(int x){
    int t=0;
    while(x){
        splay(x);
        son[x][1]=t;
        pushup(x);
        t=x;x=fa[x];
    }
}
void makeroot(int x){
    access(x);
    splay(x);
    rev[x]^=1;
}
void join(int x,int y){
    makeroot(x);
    fa[x]=y;
    splay(x);
}
void cut(int x,int y){
    makeroot(x);
    access(x);
    splay(x);
    son[y][0]=fa[x]=0;
    pushup(y);
}
int find(int x){
    access(x);splay(x);
    while(son[x][0]) x=son[x][0];
    return x;
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++){
        scanf("%d",&v[i]);
        sum[i]=v[i];
    }
    scanf("%d",&m);
    char opt[20];int x,y;
    for(int i=1;i<=m;i++){
        scanf("%s%d%d",opt,&x,&y);
        if(opt[0]==‘b‘){
            if(find(x)!=find(y)){
                printf("yes\n");
                join(x,y);
            }
            else printf("no\n");
        }
        else if(opt[0]==‘p‘){
            makeroot(x);v[x]=y;
            pushup(x);
        }
        else {
            if(find(x)==find(y)){
                makeroot(x);
                access(y);
                splay(y);
                printf("%d\n",sum[y]);
            }
            else printf("impossible\n");
        }
    }
    return 0;
}
时间: 2024-10-10 15:54:34

OTOCI(bzoj 1180)的相关文章

SCOI2013 多项式的运算 (BZOJ 3323)

似乎仍然不能附传送门..权限题T_T... 3323: [Scoi2013]多项式的运算 Time Limit: 12 Sec  Memory Limit: 64 MB Description 某天,mzry1992 一边思考着一个项目问题一边在高速公路上骑着摩托车.一个光头踢了他一脚,摩托车损坏,而他也被送进校医院打吊针.现在该项目的截止日期将近,他不得不请你来帮助他完成这个项目.该项目的目的是维护一个动态的关于x 的无穷多项式F(x) = a0 * x^0 + a1 * x^1 + a2 *

分裂游戏(bzoj 1188)

Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子.标号为 i,j,k, 并要保证 i < j , j < = k 且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中拿走一颗豆 子并在 j,k 中各放入一粒豆子(j 可能等于 k) .如果轮到某人而他无法按规则取豆子,那么他将输 掉比赛.胜利者可以

食物(bzoj 3280)

Description 明明这次又要出去旅游了,和上次不同的是,他这次要去宇宙探险! 我们暂且不讨论他有多么NC,他又幻想了他应该带一些什么东西.理所当然的,你当然要帮他计算携带N件物品的方案数. 他这次又准备带一些受欢迎的食物,如:蜜桃多啦,鸡块啦,承德汉堡等等 当然,他又有一些稀奇古怪的限制: 每种食物的限制如下: 承德汉堡:偶数个 可乐:0个或1个 鸡腿:0个,1个或2个 蜜桃多:奇数个 鸡块:4的倍数个 包子:0个,1个,2个或3个 土豆片炒肉:不超过一个. 面包:3的倍数个 注意,这里

飞镖(bzoj 2335)

Description 飞镖是在欧洲颇为流行的一项运动.它的镖盘上分为20个扇形区域,分别标有1到20的分值,每个区域中有单倍.双倍和三倍的区域,打中对应的区域会得到分值乘以倍数所对应的分数.例如打中18分里面的三倍区域,就会得到54分.另外,在镖盘的中央,还有"小红心"和"大红心",分别是25分和50分. 通常的飞镖规则还有一条,那就是在最后一镖的时候,必须以双倍结束战斗,才算获胜.也就是说,当还剩12分的时候,必须打中双倍的6才算赢,而打中单倍的12或者三倍的4

外星千足虫(bzoj 1923)

Description Input 第一行是两个正整数 N, M. 接下来 M行,按顺序给出 Charles 这M次使用"点足机"的统计结果.每行 包含一个"01"串和一个数字,用一个空格隔开."01"串按位依次表示每只虫 子是否被放入机器:如果第 i 个字符是"0"则代表编号为 i 的虫子未被放入,"1" 则代表已被放入.后面跟的数字是统计的昆虫足数 mod 2 的结果. 由于 NASA的实验机器精确无误

费用流(bzoj 3130)

Description Alice和Bob在图论课程上学习了最大流和最小费用最大流的相关知识.    最大流问题:给定一张有向图表示运输网络,一个源点S和一个汇点T,每条边都有最大流量.一个合法的网络流方案必须满足:(1)每条边的实际流量都不超过其最大流量且非负:(2)除了源点S和汇点T之外,对于其余所有点,都满足该点总流入流量等于该点总流出流量:而S点的净流出流量等于T点的净流入流量,这个值也即该网络流方案的总运输量.最大流问题就是对于给定的运输网络,求总运输量最大的网络流方案. 上图表示了一

阿狸的打字机(bzoj 2434)

Description 阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机.打字机上只有28个按键,分别印有26个小写英文字母和'B'.'P'两个字母. 经阿狸研究发现,这个打字机是这样工作的: l 输入小写字母,打字机的一个凹槽中会加入这个字母(这个字母加在凹槽的最后). l 按一下印有'B'的按键,打字机凹槽中最后一个字母会消失. l 按一下印有'P'的按键,打字机会在纸上打印出凹槽中现有的所有字母并换行,但凹槽中的字母不会消失. 例如,阿狸输入aPaPBbP,纸上被打印的字符如下:

滑雪与时间胶囊(bzoj 2753)

Description a180285非常喜欢滑雪.他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi.a180285能从景点i 滑到景点j 当且仅当存在一条i 和j 之间的边,且i 的高度不小于j. 与其他滑雪爱好者不同,a180285喜欢用最短的滑行路径去访问尽量多的景点.如果仅仅访问一条路径上的景点,他会觉得数量太少.于是a180285拿出了他随身携带的时间胶囊.这是一种很神奇的药物,吃下之后可以立即回到

数表(bzoj 3529)

Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. Input 输入包含多组数据.    输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据. Output 对每组数据,输出一行一个整数,表示答案模2^31的值. Sample Input 2 4 4 3 10 10 5 Sa