数学与当代生命科学(吴家睿)

20世纪中期,随着蛋白质空间结构的解析和DNA双螺旋的发现,形成了以遗传信息载体核酸和生命功能执行者蛋白质为主要研究对象的分子生物学时代。分子生物学的诞生使传统的生物学研究转变为现代实验科学。但是,在生命科学领域的实验科学与其它实验科学如实验物理学相比,更多地是注重经验,而非抽象的理论或概念。此外,这些生物学家们大多关注定性的研究,以发现新基因或新蛋白质为主要目标,对于定量的研究,如分子动力学过程等没有给予足够的重视。尽管如此,现代生命科学在20世纪的下半叶还是取得了丰盛的成果。正如美国科学院院长分子生物学家阿尔伯特(B. Albert)所说,“在一个基因克隆占主要地位的时代,当今许多优秀的科学家在不具备任何定量研究的能力下仍然取得了巨大的成绩”。但是,随着后基因组时代的到来,生物学研究者的定量研究能力和知识已不再是可有可无的了。  

  

  大势所趋

  

  英国生物学家保罗•纳斯(Paul Nurse) 因细胞周期方面的卓越研究成为了2001年度诺贝尔生理学或医学奖的得主。他曾在一篇回顾20世纪细胞周期研究的综述文章中以这样的文字结束:“我们需要进入一个更为抽象的陌生世界,一个不同于我们日常所想象的细胞活动的、能根据数学有效地进行分析的世界。”

  

  也许基于同样的考虑,2000年10月美国国家科学基金会(NSF)的主任科勒威尔(R. Colwell)在向国会提交的报告中,称数学是当前所有新兴学科和研究领域的基础,要求下一年度对数学的资助要增加3倍以上,达到1.21亿元美金。在这些增加的预算中,有很大的一部分被用来支持数学与其它学科的交叉研究,尤其是数学与生物学的交叉研究项目。

  

  尽管数学一直在现代生命科学中扮演着一定的角色,如数量遗传学、生物数学等。但真正体会到数学重要性的还是20世纪90年代生物学家。基因组学是这种趋势的主要催化剂。随着DNA序列测定技术的快速发展,20世纪90年代后期每年测定的DNA碱基序列以惊人的速度迅速增长。以美国的基因数据库(GenBank)为例,1997年拥有的碱基序列为1x109,次年就翻了一番,为2x109;到2000年GenBank已拥有近8x109个碱基序列。同样,在蛋白质组研究和转录组研究等快速推进的过程中,各种数据也在迅猛的增加。据估计,现在生物数据量可以达到每年1015字节。如何管理这些“海量”数据,以及如何从它们中提取有用的知识成为了对当前生物学家、数学家、计算机专家等的巨大挑战。由此引出了一门新兴学科:生物信息学(Bioinformatics)。此外,对细胞和神经等复杂系统和网络的研究导致了数学生物学(Mathematical Biology)的诞生。美国国家科学基金委员会为此专门启动了一项“定量的环境与整合生物学”的项目,以鼓励生物学家把数学应用到生物学研究中去。几乎在同一个时间,美国国立卫生研究院也设立了一项“计算生物学”的重大项目。

  

  

  

  理解生命的新工具:模型

  

  上面的论述也许会造成这样一种印象,数学在现代生命科学中的应用主要是在“海量”数据的处理方面。可以这样说,今天的确是有许多生物学家是从“计算”的角度来看待数学对生命科学的作用。然而,对于理解生命现象来说,计算是远远不够的。当我们把通过基因芯片获得的成千上万的实验数据喂进一台计算机,让计算机根据一定的运行程序吐出一堆堆的结论时,我们是否可以认为,我们已经理解了所要研究的生物学问题?不仅如此,我们也许还需要警惕,不要让计算机代替我们的思考。

  

  对于今天的生命科学工作者,数学的价值应该体现在“模型化”(Modelling)方面。通过模型的构建,那些看上去杂乱无章的实验数据将被整理成有序可循的数学问题;通过模型的构建,所要研究的问题的本质将被清晰地抽象出来;通过模型的构建,研究者们的实验不再是一种随意的探索,而是通过“假设驱动”(Hypothesis-driven approach)的理性实验,就如同物理学家们的工作一样。

  

  上个世纪的实验生物学家把生命视为一个线性的系统,力图以一种简单的因果关系来解释生命活动。通常在那些寻找新基因的研究者的内心深处,大多拥有一个“基因决定论”的愿望:一旦找到了某一种基因,就能解答一个生物学问题。癌症有“癌基因”,长寿有“长寿基因”,聪明有“聪明基因”,甚至犯罪都是由一种“犯罪基因”所造成。但是,几十年的研究轨迹,划出的却是一幅幅越来越复杂的图案。以人类发现的第一个肿瘤抑制基因p53来说,自1979年发现至今,已有近2万5千篇文章涉及到它;直接与p53相互作用的蛋白质多达数十种,新的还在发现之中。现在人们看到的p53已经是一个相当复杂的调控网络。显然,没有数学模型的帮助,要理解和分析p53的功能将不是一件容易的事。不久前,发现p53的生物学家之一莱文尔(A. J. Levine)和数学家一起,建立了一个解释p53调控线路的数学模型[1]。

  

  数学不仅能帮助我们从已有的生物学实验和数据中抽象出模型和进行解释,它还可以用于设计和建造生物学模型,也许这些生物学模型在自然的状态下是不存在的。在这种意义上说,基于数学模型和假设进行的生物学实验将更接近我们所熟知的物理学和化学实验,更多的依赖于抽象和理性,不再是一门经验科学。

  

  新世纪伊始,数学指导实验已成为了现实。不久前,美国的科学家在《自然》(Nature)杂志上报道了他们人工设计的生物模型。普林斯顿大学科学家设计了一个自然界不存在的控制基因表达的网络。这个网络可以周期性的调控大肠杆菌内一个外源基因的表达[2]。在同一期杂志上,波士顿大学的生物学家也报告了他们相类似的工作[3]。这两个工作的共同特点是,首先应用某种微分方程(两个实验室采用了不同的微分方程)进行推导和设计,然后再根据其设计去进行生物科学实验,如构造基因表达质粒,进行检测基因表达情况等。这些科学家认为:“这种‘网络的理性设计’可以导致新型的细胞工程和促进人们对自然界存在的调控网络的理解。”[2]

  

  

  

  “万物皆数也”

  

  数学常常被人视为工具。它的确也是非常有用的工具。但是,只要是作为工具,就具有可替换性。“条条道路通罗马”。工具就是道路,可以选择途径A,也可以选择途径B,只要能达到目的地就行。当然,有的可能是捷径,有的可能是弯路。但它们毕竟都不是唯一的。就如同过去的生命科学研究,没有数学也取得了不错的成绩。数学的应用显然会对现在和今后的生物学研究有帮助,但生物学家不用数学行不行呢?

  

  人类对自然和生命的关注,通常体现在两个方面的问题:构成世间万物的本质是什么以及如何去认识和探寻这种本质。前一类问题是属于本体论,后一类问题则属于认识论。如果采用这样假设:生命的本质最终是体现在数学规律的构成上。那么,没有数学显然我们就不能真正和彻底地揭示出生命的本质。

  

  DNA和蛋白质是两类最重要的生物大分子。它们通常都是由众多的基本元件(碱基、氨基酸)相互联结而成的长链分子。但是,它们的空间形状并非是一条平直的线条,而是一个规则的“螺旋管”。尽管在20世纪中叶人们就发现了DNA双螺旋和蛋白质α螺旋结构,但至今为止,人们还是难以解释,为什么大自然要选择“螺旋形”作为这些生物大分子的结构基础。

  

  不久前,美国和意大利的一组科学家,利用离散几何的方法研究了致密线条的“最大包装”(Optimal Packing)问题,得到的答案是,在一个体积一定的容器里,能够容纳的最长的线条的形状是螺旋形 [4]。研究者们意识到,“天然形成的蛋白质正是这样的几何形状”[4]。显然由此我们能够窥见生命选择了螺旋作为其空间结构基础的数学原因:在最小空间内容纳最长的分子。凡是熟悉分子生物学和细胞生物学的人都知道,生物大分子的包装是生命的一个必要过程。作为遗传物质载体的DNA,其线性长度远远大于容纳它的细胞核的直径。例如构成一条人染色体的DNA的长度是其细胞核的数千倍。因此通常都要对DNA链进行多次的折叠和包扎,使长约5厘米的DNA双螺旋链变成大约5微米的致密的染色体。由此我们可以认为,生命遵循“最大包装”的数学原理来构造自己的生物大分子。

  

  细胞是生命的基本组成单元和功能单元。而细胞分裂(又称为细胞增殖)是细胞最基本和最重要的活动。完成一次细胞分裂的活动称为细胞周期。不同物种的细胞周期的时间长短是不一样的,有着严格的调控。那么,是什么构成了细胞周期的“时钟”?最近的研究表明,对于酵母细胞而言,一种细胞周期调控蛋白的磷酸化程度有可能被用作细胞周期运行的“时钟”。这种被称为Sicl的蛋白质上有9个位置可以被蛋白激酶CDK进行磷酸化。当它被加上第1个磷酸基因至第5个磷酸基团的时候,其分子的行为没有出现变化。但是,一旦被加上第6个磷酸基团时,它就可以和一种称为Cdc4的蛋白发生相互作用,然后被蛋白酶降解,从而导致细胞进入DNA合成期(S期),最后完成细胞分裂。研究者详尽而深入的工作揭示出,Sicl蛋白的每一次磷酸化都有助于与Cdc4的相互作用,但只有到第6次或6次以上,其结合力才达到与Cdc4稳固的结合。此外,如果给Sicl蛋白人为装上一段外源氨基酸肽段,一次磷酸化就能使Sicl与Cdc4结合并导致其降解,这时Sicl控制细胞周期时间的功能就会丧失[5]。这个研究成果很典型地揭示了细胞是如何通过数量的控制来实现其生命活动。

  

  古希腊著名的数学家毕达哥拉斯(Pythagoras)曾给后人留下过这样一个观点:“万物皆数也”。如果他的观点是正确的,作为大自然的杰作——生命,一定也是按照数学方式设计而成的。因此,数学不仅仅能够提升生命科学研究,使生命科学成为抽象的和定量的科学,而且是揭示生命奥秘的必由之路。

  

  [1] Bar-Or R L, et al. Proc. Natl. Acad. Sci. USA, 2000, 97:11250

  

  [2] Elowitz M B & Leibler S Nature, 2000, 403:335

  

  [3] Gardner T S, et al. Nature, 2000,403:339

  

  [4] Maritan A, et al Nature, 2000,406:287

  

  [5] Nash P, et al. Nature, 2001, 414: 514

时间: 2024-10-26 05:19:26

数学与当代生命科学(吴家睿)的相关文章

把科学带回家 小学算术好,上了中学以后数学反而不好

把科学带回家 小学算术好,上了中学以后数学反而不好?你不知道算术是数学里的文科吗? 2018-06-15 43 KB  柏舟 重视儿童听力问题,重视儿童分泌性中耳炎 2018-06-22 10 KB KnowYourself 职场中的瓶颈 | "特权感"是如何阻碍你获得更高成就? (周一) 下午 5:00 47 KB  KnowYourself 为什么有些人比大多数人更敏感?|高敏感人群生存指南 07-09 (周一) 46 KB  KnowYourself 上班签到永远差两分钟?| 迟

大学的意义——施一公在生命科学学院2015年毕业典礼上的讲话

2015年7月8日上午,清华大学生命科学学院2015年毕业典礼在清华大学蒙民伟音乐厅举行,清华大学生命科学学院院长施一公教授发表即席演讲.以下是演讲记录. 我原本应该只讲五分钟,但今天我们时间提前了,所以我想多讲一点.这也许是我最后一次以院长的身份给我们的本科生.研究生拨穗,我很珍惜这次机会. 我从回国建成实验室算起,到现在整整8年,时间不短了.这是我的母校,也是在座各位的母校,我们深爱的地方.今天我们又有一茬本科生.硕士生.博士生毕业,我确实心情很激动,很多话想说,但我没有事先准备讲稿,因为我

吴家天下:小叶紫檀手串的正确盘完与保养

作为传承百年的工艺品世家,吴家天下的小叶紫檀佛珠手串受到非常多的朋友的喜欢.手上有一串上好的小叶紫檀佛珠,如何正确的盘完与保养呢? 首先,从紫檀保养的必要性说起.为什么我们要保养小叶紫檀呢?从紫檀木质特征上来说,正宗的印度小叶紫檀新切面为橘黄,经过短时间(一周左右)的氧化,颜色就会有变化.从橘黄到橘红再到深红,深紫.很多人说紫檀后期会变成黑色,其实那是视觉问题,在光线充足的条件下,你会发现那是紫色,在任何一家博物馆看到的再老的紫檀,也没有变成黑色的,它们最后的颜色为"紫".因此,从古至

王立铭 生命科学50讲 | 得到

偶尔从朋友口中得知这门课程,发现非本专业的朋友对生命科学的理解竟然颇为深刻,好奇这到底是门什么样的课程,于是几番搜索下载了,在高铁上听了快25讲,发现这门课程还真的是有点意思. 首先说说王立铭,83年出生的浙大教授,美国加州理工学院自费PhD,毕业后直接在Berkeley拿到教授职称,然后工作了一年就回国拿到了青千. 首先,只听音频,你会发现王立铭的声音颇有播音员的特色,听着非常舒服:其次就是王立铭的讲故事的功底真不是盖的,搞科普和科研都必须要会讲故事. 最重要的就是王立铭对生命科学历史和进展的

如何看待清华大学生命科学学院削减研究生补助的行为?

作者:生姜 →_→看到上面您们说的.我想说一句:好歹清华,北大都是top2的大学了,您们的待遇已经算是上层的"农奴"了. 其他大学,特别非985 211的,那真的是"欲当农奴而不能的秽多"了. →_→就拿本地垃圾地方性一本(二A)大学的生物工程研究生待遇来讲吧. 我们这地方最低工资是1350,她们的补助是这个的的一半的一半. 基本到手是300,不包吃住,不包水电费,连网费都不包. 基本上每个月都要自己倒贴几百的,这就导致我市一大奇观-毕竟大学隔壁就是全市文明的五星级

[zz]有哪些优秀的科学网站和科研软件推荐给研究生?

https://www.zhihu.com/question/37061410 如题,各位科研前辈,有没有一些好的科研网站或者适合科研人员用的软件以及APP,推荐给一只研一的菜鸡,帮助我们提高科研效率,了解更多知识.或者指点迷津,分享一些科研经验,让菜鸡少走弯路.欢迎分享,感激不尽!!! 6 条评论 分享 默认排序按时间排序 56 个回答 2230赞同反对,不会显示你的姓名 ljthyd食品科学.食品安全.食品加工话题优秀回答者 食品… 2230 人赞同 写几个常见的我觉得挺好的网站及软件,也不

一些对数学领域及数学研究的个人看法(转载自博士论坛wcboy)

转自:http://www.math.org.cn/forum.php?mod=viewthread&tid=14819&extra=&page=1 原作者: wcboy 现在的论坛质量比以前差了,大部分都是来解题问答的,而且层次较低.以前论坛中,Qullien很令人印象深刻,但愿他能在国外闯出一片天空.现在 基础数学版代数&数论子版中那几个讨论代数几何的还不错.不期望目前论坛出现很多高层次高手,高层次高手应该站在好课题上高观点讨论数学,出 现这样的网友,看他们的言论非常过

数学建模竞赛题目

建模意义 思考方法 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象.简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段. 数学建模就是用数学语言描述实际现象的过程.这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容. 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只研究数学而不管数学在实际中的应用的数学家)变成物理

【转】科大校长给数学系学弟学妹的忠告&本科数学参考书

1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课至少要看一本参考书,尽量做一本习题集. 3.数学分析别做吉米,除非你太无聊,推荐北大方企勤的习题集.此外注意一下有套波兰的数学分析习题集,是不是搞得到中文或英文版. 4.线性代数推荐普罗斯库列科夫的<<线性代数习题集>>和法捷耶夫的<<高等代数习题集>>.莫斯科