卡尔曼滤波器

卡尔曼的历史不讲了...

网上写卡尔曼滤波器的太多了...而且大(yi)多(mu)雷(yi)同(yang),所以,我也不知道谁是第一稿,谁是转载者,这里...我也是参考别人的博文。将卡尔曼滤波器用在了一个GPS的小程序里,最简单的一维模型...



首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:

X(k)=A*X(k-1)+B*U(k)+W(k)

再加上系统的测量值:

Z(k)=H*X(k)+V(k)

上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance 分别是Q,R(这里我们假设他们不随系统状态变化而变化)。

对于满足上面的条件(线性随机微分系统,过程和测量都是高斯白噪声),卡尔曼滤波器是最优的信息处理器。下面我们来用他们结合他们的covariances 来估算系统的最优化输出。

利用系统的过程模型,来预测下一状态的系统。假设现在的系统状态是k,根据系统的模型,可以基于系统的上一状态而预测出现在状态:

X(k|k-1)=A X(k-1|k-1)+B U(k)                     (1)

式(1)中,X(k|k-1)是利用上一状态预测的结果,X(k-1|k-1)是上一状态最优的结果,U(k)为现在状态的控制量,如果没有控制量,它可以为0。

到现在为止,我们的系统结果已经更新了,可是,对应于 X(k|k-1)的covariance(协方差)还没更新。我们用P表示covariance:

P(k|k-1)=A P(k-1|k-1) A’+Q                       (2)

式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的 covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。

现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):

X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|k-1))    (3)

其中Kg为卡尔曼增益(Kalman Gain):

Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)      (4)

到现在为止,我们已经得到了k状态下最优的估算值 X(k|k)。但是为了要另卡尔曼滤波器不断的运行下去直到系统过程结束,我们还要更新k状态下X(k|k)的covariance:

P(k|k)=I-Kg(k) HP(k|k-1)                     (5)

其中I 为1的矩阵,对于单模型单测量,I=1。当系统进入k+1状态时,P(k|k)就是式子(2)的P(k-1|k-1)。这样,算法就可以自回归的运算下去。

GPS测量系统建模:

物体具有惯性,系统认为物体前一时刻和后一时刻的GPS定位坐标相同,所以A=1。没有控制量,所以U(k)=0。得到:

X(k|k-1)=X(k-1|k-1)                                    (6)

公式(2)改写成:

P(k|k-1)=P(k-1|k-1) +Q                             (7)

因为GPS的测量值直接获得,所以H=1。公式(3)(4)(5)改写成:

X(k|k)= X(k|k-1)+Kg(k) (Z(k)-X(k|k-1))      (8)

Kg(k)= P(k|k-1) / (P(k|k-1) + R)                  (9)

P(k|k)=1-Kg(k)P(k|k-1)                       (10)

为了令卡尔曼滤波器开始工作,我们需要告诉卡尔曼两个零时刻的初始值,是X(0|0)和P(0|0)。



代码:

clear
clc;

CON = 0;%初始值

tmp_y = importdata(‘kalman.txt‘);%此时importdata 读出为列数据
y = tmp_y‘;
N = length(y);%由于输入长度发生变化,N值需要修改
x = zeros(1,N);

x(1) = 0;
p = 10;

Q = 0.1*cov(randn(1,N));%过程噪声协方差
R = 100*cov(randn(1,N));%观测噪声协方差
for k = 2 : N
x(k) = x(k - 1);%预估计k时刻状态变量的值
p = p + Q;%对应于预估值的协方差
kg = p / (p + R);%kalman gain
x(k) = x(k) + kg * (y(k) - x(k));
p = (1 - kg) * p;
end

fid1=[‘Kal_output‘,‘.txt‘];
c=fopen(fid1,‘w‘);
fprintf(c,‘%f\n‘,x);
fclose(c);

t=1:N;
figure(1);
expValue = zeros(1,N);
for i = 1: N
expValue(i) = CON;
end
plot(t,x,‘r‘,t,y,‘b‘);
legend(‘输出数据‘,‘测量数据‘);
axis([0 N -0.0005 0.0005])
xlabel(‘Sample time‘);
ylabel(‘Value‘);
title(‘kalman filter‘);

效果:

时间: 2024-12-12 16:49:14

卡尔曼滤波器的相关文章

卡尔曼滤波器的简单推导

本文将简单推导卡尔曼滤波器的预测和更新公式.为了简单,使用标量(一维向量)而不是向量,并且假设系统没有输入. 系统状态的理论值如下: $x_k=\Phi_k x_{k-1}+w_k$ 但是由于过程噪声和观测噪声的存在,系统状态的真实值是不可知的.但我们仍可以根据以下思路,尽量跟踪真实值: 1) 状态转换系数是已知的,因此我们可以根据上一状态得到当前状态的先验估计: $\hat{x}_k^-=\Phi_k \hat{x}_{k-1}$ 2) 将对当前状态的先验估计$\hat{x}_k^-$变换到对

卡尔曼滤波器 Kalman Filter (转载)

在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡 尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯.1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位.1957年于哥 伦比亚大学获得博士学位.我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文<A New Approach to Linear Fil

对Kalman(卡尔曼)滤波器的理解

1.简介(Brief Introduction) 在学习卡尔曼滤波器之前,首先看看为什么叫"卡尔曼".跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯.1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位.1957年于哥伦比亚大学获得博士学位.我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文&

测试卡尔曼滤波器(Kalman Filter)

真实的温度测试数据,通过加热棒加热一盆水测得的真实数据,X轴是时间秒,Y轴是温度: 1)滤波前 2)滤波后(p=10, q=0.0001, r=0.05, kGain=0;) 2)滤波后(p=10, q=0.00001, r=1, kGain=0;),Y轴放大10倍并取整 .   相关C语言代码: #define LINE 1024 static float prevData=0; static float p=10, q=0.0001, r=0.05, kGain=0; float kalma

卡尔曼滤波器算法浅析及matlab实战

卡尔曼滤波器是一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法.而且由于观测包含系统的噪声和干扰的影响,所以最优估计也可看做是滤波过程. 卡尔曼滤波器的核心内容就是5条公式,计算简单快速,适合用于少量数据的预测和估计. 下面我们用一个例子来说明一下卡尔曼算法的应用. 假设我们想在有一辆小车,在 t 时刻其速度为 Vt ,位置坐标为 Pt,ut 表示 t 时刻的加速度,那么我们可以用Xt表示 t 时刻的状态,如下: 则我们可以得到,由t-1 时刻到 t 时刻,位置以

卡尔曼滤波器原理之基本思想续

在上一篇文章卡尔曼滤波器原理之基本思想中,我们分析并推导了基于卡尔曼一步预测的滤波器状态递推公式,接下来,我们将完成上一次的推导过程.首先,我们拿来上次的推导结果: \[\hat x(n + 1|{{\bf{Y}}_n}) = \sum\limits_{k = 1}^{n - 1} {E[x(n + 1){\alpha ^H}(k)]{{\bf{R}}^{ - 1}}(k)\alpha (k)}  + E[x(n + 1){\alpha ^H}(k)]{{\bf{R}}^{ - 1}}(k)\a

卡尔曼滤波器原理之基本思想

一.卡尔曼滤波器要解决的问题 首先说一下卡尔曼滤波器要解决的是哪一类问题,这类系统应该如何建模.这里说的是线性卡尔曼滤波器,顾名思意,那就是线性动态的离散系统.这类系统可以用如下两个方程来表示: \[\begin{array}{l} x(n + 1) = F(n + 1,n)x(n) + {v_1}(n) \\  y(n) = C(n)x(n) + {v_2}(n) \\  \end{array}\] 其中: x(n)表示系统的状态 F(n+1,n)为状态转移矩阵,表示状态随时间的变化规律.通俗

opencv 卡尔曼滤波器例子,自己修改过

一.卡尔曼滤波器的理论解释 http://blog.csdn.net/lindazhou2005/article/details/1534234(推荐) 二.代码中一些随机数设置函数,在opencv中文网站上没有查到: cvRandInit() 初始化CvRandState数据结构,可以选定随机分布的种类,并给定它种子,有两种情形 cvRandInit(CvRandState数据结构,随机上界,随机下界,均匀分布参数,64bits种子的数字) cvRandInit(CvRandState数据结构

卡尔曼滤波器的介绍

卡尔曼滤波器包括5个方程.分别是先验和后验方程,其中先验方程有两个,一个是预测值方程,一个是预测值协方差方程.后验方程有三个,一个后验校正方程,一个后验增益方程,一个后验协方差方程. 以下是摘录