八数码的八境界 [转载]

八数码的八境界

 

  研究经典问题,空说不好,我们拿出一个实际的题目来演绎。八数码问题在北大在线测评系统中有一个对应的题,题目描述如下:

Eight

Time Limit: 1000MS    Memory Limit: 65536K  Special Judge

Description

The 15-puzzle has been aroundfor over 100 years; even if you don‘t know it by that name, you‘ve seen it. Itis constructed with 15 sliding tiles, each with a number from 1 to 15 on it,and all packed into a 4 by 4 frame with one tile missing. Let‘s call themissing tile ‘x‘; the object of the puzzle is to arrange the tiles so that theyare ordered as:

1 2  3  4

5 6  7  8

9  10 1112

13 14 15 x

where the only legal operationis to exchange ‘x‘ with one of the tiles with which it shares an edge. As anexample, the following sequence of moves solves a slightly scrambled puzzle:

1 2  3  4    1  2 3  4    1 2  3  4   1  2  3  4

5 6  7  8   5  6  7 8    5  6 7  8    5 6  7  8

9  x 1012    9 10  x 12   9 10 11 12    9 10 11 12

13 14 11 15   13 14 11 15  13 14  x 15   13 14 15 x

r->           d->           r->

The letters in the previousrow indicate which neighbor of the ‘x‘ tile is swapped with the ‘x‘ tile ateach step; legal values are ‘r‘,‘l‘,‘u‘ and ‘d‘, for right, left, up, and down,respectively.

Not all puzzles can be solved;in 1870, a man named Sam Loyd was famous for distributing an unsolvable versionof the puzzle, and

frustrating many people. Infact, all you have to do to make a regular puzzle into an unsolvable one is toswap two tiles (not counting the missing ‘x‘ tile, of course).

In this problem, you willwrite a program for solving the less well-known 8-puzzle, composed of tiles ona three by three arrangement.

Input

You will receive a descriptionof a configuration of the 8 puzzle. The description is just a list of the tilesin their initial positions, with the rows listed from top to bottom, and thetiles listed from left to right within a row, where the tiles are representedby numbers 1 to 8, plus ‘x‘. For example, this puzzle

1 2  3

x 4  6

7 5  8

is described by this list:

1 2 3 x 4 6 7 5 8

Output

You will print to standardoutput either the word ``unsolvable‘‘, if the puzzle has no solution, or astring consisting entirely of the letters ‘r‘, ‘l‘, ‘u‘ and ‘d‘ that describesa series of moves that produce a solution. The string should include no spacesand start at the beginning of the line.

Sample Input

2 3  4  1 5  x  7 6  8

Sample Output

ullddrurdllurdruldr

  这个题目是SpecialJudge,任意找出一组移法就行,但是很多时候,我们需要找到步数最少的移法,所以,这里以步数最少的移法为目的。真正优化这个问题涉及到很多,比如A*、全排列哈希、堆优化等。一境界一代码,咱们一个境界一个境界走,慢慢优化这个经典问题,当然,我不是那么无聊,不会把所有境界都列出代码……

  境界一、 暴力广搜+STL

  开始的时候,自然考虑用最直观的广搜,因为状态最多不超过40万,计算机还是可以接受的,由于广搜需要记录状态,并且需要判重,所以可以每次图的状态转换为一个字符串,然后存储在stl中的容器set中,通过set的特殊功能进行判重,由于set的内部实现是红黑树,每次插入或者查找的复杂度为Log(n),所以,如果整个算法遍历了所有状态,所需要的复杂度为n*Log(n),在百万左右,可以被计算机接受,由于对string操作比较费时,加上stl全面性导致 速度不够快,所以计算比较费时,这样的代码只能保证在10秒内解决任何问题。但,明显效率不够高。POJ上要求是1秒,无法通过。

  境界二、广搜+哈希

  考虑到费时主要在STL,对于大规模的遍历,用到了ST的set和string,在效率上的损失是很大的,因此,现在面临一个严重的问题,必须自己判重,为了效率,自然是自己做hash。有点麻烦,hash函数不好想,实际上是9!种排列,需要每种排列对应一个数字。网上搜索,得知了排列和数字的对应关系。取n!为基数,状态第n位的逆序值为哈希值第n位数。对于空格,取其为9,再乘以8!。例 如,1 3 7 24 6 9 5 8 的哈希值等于:0*0! + 2*1! + 0*2! + 1*3! + 3*4! +1*5! + 0*6! + 1*7! + 0*8! <9!具体的原因可以去查查一些数学书,其中1 2 34 5 6 7 8 9 的哈希值是0 最小,9 8 7 6 54 3 2 1 的哈希值是(9!-1)最大。而其他值都在0 到(9!-1) 中,且均唯一。然后去掉一切STL之后,甚至包括String之后,得到单向广搜+Hash的代码,算法已经可以在三秒钟解决问题,可是还是不够快!POJ时限是1秒,后来做了简单的更改,将路径记录方法由字符串改为单个字符,并记录父节点,得到解,这次提交,266ms是解决单问题的上限。当然,还有一个修改的小技巧,就是逆序对数不会改变,通过这个,可以直接判断某输入是否有可行解。由于对于单组最坏情况的输入,此种优化不会起作用,所以不会减少单组输入的时间上限。

  境界三、广搜+哈希+打表

  好,问题可以在200—300ms间解决,可是,这里我们注 意到一个问题,最坏情况下,可能搜索了所有可达状态,都无法找到解。如果这个题目有多次输入的话,每次都需要大量的计算。其实,这里可以从反方向考虑下,从最终需要的状态,比如是POJ 1077需要的那种情况,反着走,可达的情况是固定的。可以用上面说的那种相应的Hash的方法,找到所有可达状态对应的值,用一个bool型的表,将可达状态的相应值打表记录,用“境界三”相似的方法记录路径,打入表中。然后,一次打表结束后,每次输入,直接调用结果!这样,无论输入多少种情况,一次成功,后面在O(1)的时间中就能得到结果!这样,对于ZOJ的多组输入,有致命的帮助!

  境界四、双向广搜+哈希
  Hash,不再赘述,现在,我们来进行进一步的优化,为了减少状态的膨胀,自然而然的想到了双向广搜,从输入状态点和目标状态1 2 3 4 5 6 7 8 9同时开始搜索,当某方向遇到另一个方向搜索过的状态的时候,则搜索成功,两个方向对接,得到最后结果,如果某方向遍历彻底,仍然没有碰上另一方向,则无法完成。

  境界五、A*+哈希+简单估价函数
  用到广搜,就可以想到能用经典的A*解决,用深度作为g(n),剩下的自然是启发函数了。对于八数码,启发函数可以用两种状态不同数字的数目。接下来就是A*的套路,A*的具体思想不再赘述,因为人工智能课本肯定比我讲的清楚。但是必须得注意到,A*需要满足两个条件:

1.h(n)>h‘(n),h‘(n)为从当前节点到目标点的实际的最优代价值。

2.每次扩展的节点的f值大于等于父节点的f值小。

自然,我们得验证下我们的启发函数,h验证比较简单不用说,由于g是深度,每次都会较父节点增1。再看h,认识上, 我们只需要将h看成真正的“八数码”,将空格看空。这里,就会发现,每移动一次,最多使得一个数字回归,或者说不在位减一个。 h最多减小1,而g认为是深度,每次会增加1。所以,f=g+h, 自然非递减,这样,满足了A*的两个条件,可以用A*了!

  境界六、A*+哈希+曼哈顿距离

  A*的核心在启发函数上,境界五若想再提升,先想到的是启发函数。这里,曼哈顿距离可以用来作为我们的启发函数。曼哈顿距离听起来神神秘秘,其实不过是“绝对轴距总和”,用到八数码上,相当与将所有数字归位需要的最少移动次数总和。作为启发函数,自然需要满足“境界五”提到的那两个条件。现在来看这个曼哈顿距离,第一个条件自然满足。对于第二个,因为空格被我们剥离出去,所以交换的时候只关心交换的那个数字,它至多向目标前进1,而深度作为g每次是增加1的,这样g+h至少和原来相等,那么,第二个条件也满足了。A*可用了,而且,有了个更加优化的启发函数。

  境界七、A*+哈希+曼哈顿距离+小顶堆

  经过上面优化后,我们发现了A*也有些鸡肋的地方,因为需要每次找到所谓Open表中f最小的元素,如果每次排序,那么排序的工作量可以说是很大的,即使是快排,程序也不够快!这里,可以想到,由于需要动态的添加元素,动态的得到程序的最小值,我们可以维护一个小顶堆,这样的效果就是。每次取最小元素的时候,不是用一个n*Log(n)的排序,而是用log(n)的查找和调整堆,好,算法又向前迈进了一大步。

  境界八、IDA*+曼哈顿距离

  IDA*即迭代加深的A*搜索,实现代码是最简练的,无须状态判重,无需估价排序。那么就用不到哈希表,堆上也不必应用,空间需求变的超级少。效率上,应用了曼哈顿距离。同时可以根据深度和h值,在找最优解的时候,对超过目前最优解的地方进行剪枝,这可以导致搜索深度的急剧减少,所以,这,是一个致命的剪枝!因此,IDA*大部分时候比A*还要快,可以说是A*的一个优化版本!

时间: 2024-10-09 17:51:43

八数码的八境界 [转载]的相关文章

HDU 1043 八数码(八境界)

8境界:http://www.cnblogs.com/goodness/archive/2010/05/04/1727141.html 境界一. 暴力广搜+STL (HDU 内存超限,POJ 时间超限) map存路径,set判重,string存状态,毫无疑问,炸了. #include<cstdio> #include<cstring> #include<string> #include<cmath> #include<vector> #inclu

HDU 1043 POJ 1077 八数码问题

以下内容转载自:http://www.cnblogs.com/goodness/archive/2010/05/04/1727141.html 八数码的八境界 研究经典问题,空说不好,我们拿出一个实际的题目来演绎.八数码问题在北大在线测评系统中有一个对应的题,题目描述如下: Eight Time Limit: 1000MS    Memory Limit: 65536K  Special Judge Description The 15-puzzle has been aroundfor ove

HDU 1043 八数码(A*搜索)

在学习八数码A*搜索问题的时候需要知道以下几个点: Hash:利用康托展开进行hash 康托展开主要就是根据一个序列求这个序列是第几大的序列. A*搜索:这里的启发函数就用两点之间的曼哈顿距离进行计算就可以. 减枝:在八数码里,任意交换一个空行和一个位置的数字,这个八数码的逆序数是不变的,这样就可以根据目前状态判断是否可达终点状态了. 第一次做这个题用的map进行哈希,结果果断超时,之后又写了LRJ书上的hash方法也超时了,最后只能用康托展开了 详细请参考:[八数码的八重境界] http://

【转】八数码问题及A*算法

一.八数码问题八数码问题也称为九宫问题.在3×3的棋盘,摆有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同.棋盘上还有一个空格,与空格相邻的棋子可以移到空格中.要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤.所谓问题的一个状态就是棋子在棋盘上的一种摆法.棋子移动后,状态就会发生改变.解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态.八数码问题一般使用搜索法来解.搜索法有广度优先搜索法.深度优

hdu 1034 Eight 传说中的八数码问题。真是一道神题,A*算法+康托展开

Eight Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 13506    Accepted Submission(s): 3855 Special Judge Problem Description The 15-puzzle has been around for over 100 years; even if you don'

HDU1043 八数码(BFS + 打表)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 , 康托展开 + BFS + 打表. 经典八数码问题,传说此题不做人生不完整,关于八数码的八境界:http://www.cnblogs.com/goodness/archive/2010/05/04/1727141.html 我自己是用哈希(康托展开) + BFS  + 打表过的,第三重境界. 由于一些高级的搜索现在还没学,所以目前能升级的也就是用双向BFS来做了,等过几天有心情了来做. 本文

多种方法求解八数码问题

AI的实验报告,改了改发上来.希望路过的大牛不吝赐教.非常是纳闷我的ida*怎么还没有双搜快.还有发现基于不在位启示的A*和Ida*都挺慢.尤其是ida* 搜索31步的竟然要十几秒.是我写的代码有问题吗?忘路过的大牛指导啊!!!! 另外声明一下,有些东西也是看网上各路牛人的blog学来的,因为比較杂,再次无法一一列出,总之再次感谢把自己的思考的结果放到网上与大家分享的大牛们.谢谢! 八数码问题 八数码问题也称为九宫问题.在3×3的棋盘,摆有八个棋子,每一个棋子上标有1至8的某一数字,不同棋子上标

论久违的八数码问题——小试牛刀(2)

八数码问题 八数码问题也称为九宫问题.在3×3的棋盘,摆有八个棋子,每一个棋子上标有1至8的某一数字,不同棋子上标的数字不同样.棋盘上另一个空格,与空格相邻的棋子能够移到空格中.要求解决的问题是:给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤.所谓问题的一个状态就是棋子在棋盘上的一种摆法.棋子移动后,状态就会发生改变.解八数码问题实际上就是找出从初始状态到达目标状态所经过的一系列中间过渡状态.——摘自DALAO笔记 {http://www.tuicool

有很多种方法来解决八数码

AI实验报告,改变了重定向.希望通过翼牛. 我很纳闷ida*然而,如何快速的双搜索.还找到了灵感不在位的基础上A*和Ida*来到慢.特别ida* 搜索31步骤甚至十几秒.我写的代码是有问题?忘记丹尼尔路过指点啊.!! ! 另外声明一下,有些东西也是看网上各路牛人的blog学来的,因为比較杂,再次无法一一列出.总之再次感谢把自己的思考的结果放到网上与大家分享的大牛们.谢谢! 八数码问题 八数码问题也称为九宫问题.在3×3的棋盘,摆有八个棋子,每一个棋子上标有1至8的某一数字.不同棋子上标的数字不同