文章来源:http://blog.csdn.net/zhjchengfeng5/article/details/7786595 谁是欧几里德?自己百度去 先介绍什么叫做欧几里德算法 有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的na?ve ,那怎么做? 欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). 第一种证明: a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b)的公约数 假设d 是(b,a mod b)的公约数,则 d | b , d |r ,但是a
Happy 2006 Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 10309 Accepted: 3566 Description Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are a
欧几里德算法又称为辗转相除法,用于计算两个非负整数的最大公因数.其伪代码如下: gcd(a, b) //要求保证传入的a>=b if(b == 0) return a return gcd(b, a % b) 首先说明这个函数能返回a与b的最大公因数.但是我们不从代码到原理,我们要从原理返回代码.(下面的出现的所有符号均为非负整数) 在a与b均非0且a>=b的情况下,若c是a和b的最大公因数(c>0),那么就有c|a和c|b的同时成立.显然a=i*c,b=j*c,此处应满足1<=j