转: 单调队列

我们从最简单的问题开始:

给定一个长度为N的整数数列a(i),i=0,1,...,N-1和窗长度k.

要求:

f(i) = max{a(i-k+1),a(i-k+2),..., a(i)},i = 0,1,...,N-1

问题的另一种描述就是用一个长度为k的窗在整数数列上移动,求窗里面所包含的数的最大值。

解法一:

很直观的一种解法,那就是从数列的开头,将窗放上去,然后找到这最开始的k个数的最大值,然后窗最后移一个单元,继续找到k个数中的最大值。

这种方法每求一个f(i),都要进行k-1次的比较,复杂度为O(N*k)。

那么有没有更快一点的算法呢?

解法二:

我们知道,上一种算法有一个地方是重复比较了,就是在找当前的f(i)的时候,i的前面k-1个数其它在算f(i-1)的时候我们就比较过了。那么我们能不能保存上一次的结果呢?当然主要是i的前k-1个数中的最大值了。答案是可以,这就要用到单调递减队列。

单调递减队列是这么一个队列,它的头元素一直是队列当中的最大值,而且队列中的值是按照递减的顺序排列的。我们可以从队列的末尾插入一个元素,可以从队列的两端删除元素。

1.首先看插入元素:为了保证队列的递减性,我们在插入元素v的时候,要将队尾的元素和v比较,如果队尾的元素不大于v,则删除队尾的元素,然后继续将新的队尾的元素与v比较,直到队尾的元素大于v,这个时候我们才将v插入到队尾。

2.队尾的删除刚刚已经说了,那么队首的元素什么时候删除呢?由于我们只需要保存i的前k-1个元素中的最大值,所以当队首的元素的索引或下标小于 i-k+1的时候,就说明队首的元素对于求f(i)已经没有意义了,因为它已经不在窗里面了。所以当index[队首元素]<i-k+1时,将队首 元素删除。

从上面的介绍当中,我们知道,单调队列与队列唯一的不同就在于它不仅要保存元素的值,而且要保存元素的索引(当然在实际应用中我们可以只需要保存索引,而通过索引间接找到当前索引的值)。

为了让读者更明白一点,我举个简单的例子。

假设数列为:8,7,12,5,16,9,17,2,4,6.N=10,k=3.

那么我们构造一个长度为3的单调递减队列:

首先,那8和它的索引0放入队列中,我们用(8,0)表示,每一步插入元素时队列中的元素如下:

0:插入8,队列为:(8,0)

1:插入7,队列为:(8,0),(7,1)

2:插入12,队列为:(12,2)

3:插入5,队列为:(12,2),(5,3)

4:插入16,队列为:(16,4)

5:插入9,队列为:(16,4),(9,5)

。。。。依此类推

那么f(i)就是第i步时队列当中的首元素:8,8,12,12,16,16,。。。

poj2823  n, k分别代表数组数的个数 和 每k个数找一个最值, 输出最值序列, 0(n)的单调队列 ;

Window position Minimum value Maximum value
[1  3  -1] -3  5  3  6  7  -1 3
 1 [3  -1  -3] 5  3  6  7  -3 3
 1  3 [-1  -3  5] 3  6  7  -3 5
 1  3  -1 [-3  5  3] 6  7  -3 5
 1  3  -1  -3 [5  3  6] 7  3 6
 1  3  -1  -3  5 [3  6  7] 3 7
#include <math.h>
#include <iostream>
const int MAX = 1e6+1;

int a[MAX];   //存储数据;
int q[MAX];   //队列;
int p[MAX];   //存储啊a[i]中的下标;
int Min[MAX]; //输出最小;
int Max[MAX]; //输出最大;
int n, k;
using namespace std;

void get_min()
{
    int i;
    int head=1, tail =0;
    for(i=0; i< k-1; i++)  //先把两个入队 ;
    {
        while(head <=tail &&q[tail] >= a[i])  //队尾元素大于要输入的数 ;
            --tail;
        q[++tail]=a[i];
        p[tail]=i;
    }

    for( ;i <n; i++)
    {
        while(head<= tail && q[tail] >= a[i])
            --tail;
        q[++tail] =a[i];
        p[tail]= i;
        while(p[head] < i-k+1) //判断数是否过时, 即窗口是否已经划过这个数,  从0开始计数的;
        {
            head++;
        }
        //printf("%d %d\n", i, head);
        Min[i-k+1]= q[head];
    }
}

void get_max()
{
    int i;
    int head=1, tail =0;
    for(i=0; i< k-1; i++)
    {
        while(head <=tail &&q[tail] <= a[i]) //队尾元素小于要插入的值 ;
            --tail;
        q[++tail]=a[i];
        p[tail]=i;
    }

    for( ; i <n; i++)
    {
        while(head<= tail && q[tail] <= a[i]) //队尾元素小于要插入的值 ;
            --tail;
        q[++tail] =a[i];
        p[tail]= i;
        while(p[head] < i-k+1)

        {
            head++;
        }
        Max[i-k+1]= q[head];
    }
}

void output()
{
    int i;
    for(int i=0; i< n-k+1; i++)
    {
        if(i== 0)
            printf("%d", Min[0]);
        else
            printf(" %d", Min[i]);
    }
    printf("\n");

    for(int i= 0; i<n-k+1; i++)
    {
        if(i==0 )
            printf("%d", Max[0]);
        else
            printf(" %d", Max[i]);
    }
    printf("\n");
}

int main()
{
    scanf("%d%d", &n, &k);

    for(int i=0; i< n; i++)
    {
        scanf("%d", &a[i]);
    }
    get_min();
    get_max();
    output();
    return 0;
}
时间: 2024-10-10 13:46:21

转: 单调队列的相关文章

【动态规划】【单调队列】tyvj1305 最大子序和

http://blog.csdn.net/oiljt12138/article/details/51174560 单调队列优化dp #include<cstdio> #include<deque> #include<algorithm> #include<iostream> using namespace std; typedef long long ll; int n,m; ll a[300100],ans; deque<int>q; int

hdu_5884_Sort(二分+单调队列)

题目链接:hdu_5884_Sort 题意: 有n个数,每个数有个值,现在你可以选择每次K个数合并,合并的消耗为这K个数的权值和,问在合并为只有1个数的时候,总消耗不超过T的情况下,最小的K是多少 题解: 首先要选满足条件的最小K,肯定会想到二分. 然后是如何来写这个check函数的问题 我们要贪心做到使消耗最小,首先我们将所有的数排序 然后对于每次的check的mid都取最小的mid个数来合并,然后把新产生的数扔进优先队列,直到最后只剩一个数. 不过这样的做法是n*(logn)2 ,常数写的小

[Vijos 1243]生产产品(单调队列优化Dp)

Description 在经过一段时间的经营后,dd_engi的OI商店不满足于从别的供货商那里购买产品放上货架,而要开始自己生产产品了!产品的生产需要M个步骤,每一个步骤都可以在N台机器中的任何一台完成,但生产的步骤必须严格按顺序执行.由于这N台机器的性能不同,它们完成每一个步骤的所需时间也不同.机器i完成第j个步骤的时间为T[i,j].把半成品从一台机器上搬到另一台机器上也需要一定的时间K.同时,为了保证安全和产品的质量,每台机器最多只能连续完成产品的L个步骤.也就是说,如果有一台机器连续完

单调队列

先放上luogu的题目链接--滑稽窗口 然后我们再来讲单调队列 单调队列是指这样一种队列:在队列中的元素为单调递增状态或单调递减状态. 例如1 2 3 4 5和9 2 1都是单调队列,但1 2 2 3 4和4 3 4 5就不是单调队列. 但普通队列明显是维持不了单调队列的性质的. 为了维持单调队列的单调性质,我们只好想一些方法.方法就是修改队列的性质.单调队列不仅队头可以出队,队尾也可以出队. 比如说有一个单调队列是 1 3 7 8 现在突然要从队尾进来一个6如果单纯的把6插进队尾的话,那这个队

单调队列 BZOJ 2096 [Poi2010]Pilots

2096: [Poi2010]Pilots Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 819  Solved: 418[Submit][Status][Discuss] Description Tz又耍畸形了!!他要当飞行员,他拿到了一个飞行员测试难度序列,他设定了一个难度差的最大值,在序列中他想找到一个最长的子串,任意两个难度差不会超过他设定的最大值.耍畸形一个人是不行的,于是他找到了你. Input 输入:第一行两个有空格隔开的整数k(0

HDU 3706 Second My Problem First (单调队列)

题意:求给定的一个序列中最长子序列,该子序列的最大值和最小值介于m和k之间. 析:用两个单调队列来维护一个最小值,一个最大值,然后每次更新即可. 代码如下; #pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <i

codevs3327选择数字(单调队列优化)

3327 选择数字 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 给定一行n个非负整数a[1]..a[n].现在你可以选择其中若干个数,但不能有超过k个连续的数字被选择.你的任务是使得选出的数字的和最大. 输入描述 Input Description 第一行两个整数n,k 以下n行,每行一个整数表示a[i]. 输出描述 Output Description 输出一个值表示答案. 样例输入 Sample Input 5 2

【NOIP数据结构专项】单调队列单调栈

[洛谷P1901 ]发射站 http://www.luogu.org/problem/show?pid=1901 题目描述 某地有 N 个能量发射站排成一行,每个发射站 i 都有不相同的高度 Hi,并能向两边(当 然两端的只能向一边)同时发射能量值为 Vi 的能量,并且发出的能量只被两边最近的且比 它高的发射站接收. 显然,每个发射站发来的能量有可能被 0 或 1 或 2 个其他发射站所接受,特别是为了安 全,每个发射站接收到的能量总和是我们很关心的问题.由于数据很多,现只需要你帮忙计 算出接收

【单调队列优化DP】BZOJ1855-[Scoi2010]股票交易

[题目大意] 已知第i天的股票买入价为每股APi,第i天的股票卖出价为每股BPi(数据保证对于每个i,都有APi>=BPi),第i天的一次买入至多只能购买ASi股,一次卖出至多只能卖出BSi股. 股票交易所规定在两次交易(某一天的买入或者卖出均算是一次交易)之间,至少要间隔W天,也就是说如果在第i天发生了交易,那么从第i+1天到第i+W天,均不能发生交易.同时,在任何时间,一个人的手里的股票数不能超过MaxP. 在第1天之前,有一大笔钱(可以认为钱的数目无限),没有任何股票,求T天之后最多赚到多