MySQL单表百万数据记录分页性能优化

原文地址:http://www.cnblogs.com/lyroge/p/3837886.html

MySQL单表百万数据记录分页性能优化

背景:

自己的一个网站,由于单表的数据记录高达了一百万条,造成数据访问很慢,Google分析的后台经常报告超时,尤其是页码大的页面更是慢的不行。

测试环境:

先让我们熟悉下基本的sql语句,来查看下我们将要测试表的基本信息

use infomation_schema
SELECT * FROM TABLES WHERE TABLE_SCHEMA = ‘dbname’ AND TABLE_NAME = ‘product’

查询结果:

从上图中我们可以看到表的基本信息:

表行数:866633
平均每行的数据长度:5133字节
单表大小:4448700632字节

关于行和表大小的单位都是字节,我们经过计算可以知道
平均行长度:大约5k
单表总大小:4.1g
表中字段各种类型都有varchar、datetime、text等,id字段为主键

测试实验

1.   直接用limit start, count分页语句, 也是我程序中用的方法:

select * from product limit start, count
当起始页较小时,查询没有性能问题,我们分别看下从10, 100, 1000, 10000开始分页的执行时间(每页取20条), 如下:

select * from product limit 10, 20   0.016秒
select * from product limit 100, 20   0.016秒
select * from product limit 1000, 20   0.047秒
select * from product limit 10000, 20   0.094秒

我们已经看出随着起始记录的增加,时间也随着增大, 这说明分页语句limit跟起始页码是有很大关系的,那么我们把起始记录改为40w看下(也就是记录的一般左右)                                    select * from product limit 400000, 20   3.229秒

再看我们取最后一页记录的时间
select * from product limit 866613, 20   37.44秒

难怪搜索引擎抓取我们页面的时候经常会报超时,像这种分页最大的页码页显然这种时
间是无法忍受的。

从中我们也能总结出两件事情:
1)limit语句的查询时间与起始记录的位置成正比
2)mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。

2.   对limit分页问题的性能优化方法

利用表的覆盖索引来加速分页查询
我们都知道,利用了索引查询的语句中如果只包含了那个索引列(覆盖索引),那么这种情况会查询很快。

因为利用索引查找有优化算法,且数据就在查询索引上面,不用再去找相关的数据地址了,这样节省了很多时间。另外Mysql中也有相关的索引缓存,在并发高的时候利用缓存就效果更好了。

在我们的例子中,我们知道id字段是主键,自然就包含了默认的主键索引。现在让我们看看利用覆盖索引的查询效果如何:

这次我们之间查询最后一页的数据(利用覆盖索引,只包含id列),如下:
select id from product limit 866613, 20 0.2秒
相对于查询了所有列的37.44秒,提升了大概100多倍的速度

那么如果我们也要查询所有列,有两种方法,一种是id>=的形式,另一种就是利用join,看下实际情况:

SELECT * FROM product WHERE ID > =(select id from product limit 866613, 1) limit 20
查询时间为0.2秒,简直是一个质的飞跃啊,哈哈

另一种写法
SELECT * FROM product a JOIN (select id from product limit 866613, 20) b ON a.ID = b.id
查询时间也很短,赞!

其实两者用的都是一个原理嘛,所以效果也差不多

时间: 2024-10-02 22:48:25

MySQL单表百万数据记录分页性能优化的相关文章

MySQL 单表百万数据记录分页性能优化

来源:一颗卤蛋 链接:http://www.cnblogs.com/lyroge/p/3837886.html 背景: 自己的一个网站,由于单表的数据记录高达了一百万条,造成数据访问很慢,Google分析的后台经常报告超时,尤其是页码大的页面更是慢的不行. 测试环境: 先让我们熟悉下基本的sql语句,来查看下我们将要测试表的基本信息 use infomation_schemaSELECT * FROM TABLES WHERE TABLE_SCHEMA = ‘dbname’ AND TABLE_

MySQL单表百万数据记录分页性能优化,转载

背景: 自己的一个网站,由于单表的数据记录高达了一百万条,造成数据访问很慢,Google分析的后台经常报告超时,尤其是页码大的页面更是慢的不行. 测试环境: 先让我们熟悉下基本的sql语句,来查看下我们将要测试表的基本信息 use infomation_schemaSELECT * FROM TABLES WHERE TABLE_SCHEMA = 'dbname' AND TABLE_NAME = 'product' 查询结果: 从上图中我们可以看到表的基本信息: 表行数:866633平均每行的

mysql 单表百万级记录查询分页优化

insert select (制造百万条记录) 在开始百万级数据的查询之前,自己先动手制造百万级的记录来供我们使用,使用的方法是insert select方法 INSERT 一般用来给表插入一个指定列值的行.但是,INSERT 还存在另一种形式,可以利用它将一条SELECT 语句的结果插入表中.这就是所谓的INSERT SELECT, 顾名思义,它是有一条INSERT语句和一条SELECT语句组成的. 现在,有一个warning_reparied表,有2447条记录,如下: mysql> sel

mysql单表导入数据,全量备份导入单表

(1)"导出"表 导出表是在备份的prepare阶段进行的,因此,一旦完全备份完成,就可以在prepare过程中通过--export选项将某表导出了: innobackupex --apply-log --export /backup/xbackup/full/ #这个需要在备份的目录下面执行. 后面的路径是备份的目录.(重要) 不是自己定义的目录. # innobackupex --apply-log --export /path/to/backup innobackupex --a

单表60亿记录等大数据场景的MySQL优化和运维之道

此文是根据杨尚刚在[QCON高可用架构群]中,针对MySQL在单表海量记录等场景下,业界广泛关注的MySQL问题的经验分享整理而成,转发请注明出处. 杨尚刚,美图公司数据库高级DBA,负责美图后端数据存储平台建设和架构设计.前新浪高级数据库工程师,负责新浪微博核心数据库架构改造优化,以及数据库相关的服务器存储选型设计. 前言 MySQL数据库大家应该都很熟悉,而且随着前几年的阿里的去IOE,MySQL逐渐引起更多人的重视. MySQL历史 1979年,Monty Widenius写了最初的版本,

单表60亿记录等大数据场景的MySQL优化和运维之道 | 高可用架构(转)

转自http://www.php1.cn/Content/DanBiao_60_YiJiLuDengDaShuJuChangJingDe_MySQL_YouHuaHeYunWeiZhiDao_%7C_GaoKeYongJiaGou.html, 更多详细资料请参看原文 此文是根据杨尚刚在[QCON高可用架构群]中,针对MySQL在单表海量记录等场景下,业界广泛关注的MySQL问题的经验分享整理而成,转发请注明出处. 杨尚刚,美图公司数据库高级DBA,负责美图后端数据存储平台建设和架构设计.前新浪高

[转载] 单表60亿记录等大数据场景的MySQL优化和运维之道 | 高可用架构

原文: http://mp.weixin.qq.com/s?__biz=MzAwMDU1MTE1OQ==&mid=209406532&idx=1&sn=2e9b0cc02bdd4a02f7fd81fb2a7d78e3&scene=1&key=0acd51d81cb052bce4ec2a825666e97fe7d6e1072fb7d813361771645e9403309eb1af025691162c663b60ea990c3781&ascene=0&

【转】单表60亿记录等大数据场景的MySQL优化和运维之道 | 高可用架构

此文是根据杨尚刚在[QCON高可用架构群]中,针对MySQL在单表海量记录等场景下,业界广泛关注的MySQL问题的经验分享整理而成,转发请注明出处. 杨尚刚,美图公司数据库高级DBA,负责美图后端数据存储平台建设和架构设计.前新浪高级数据库工程师,负责新浪微博核心数据库架构改造优化,以及数据库相关的服务器存储选型设计. 前言 MySQL数据库大家应该都很熟悉,而且随着前几年的阿里的去IOE,MySQL逐渐引起更多人的重视. MySQL历史 1979年,Monty Widenius写了最初的版本,

MySQL查询数据表中数据记录(包括多表查询)

MySQL查询数据表中数据记录(包括多表查询) MySQL查询数据表中数据记录(包括多表查询) 转自:http://www.baike369.com/content/?id=5355 在MySQL中创建数据库的目的是为了使用其中的数据. 使用select查询语句可以从数据库中把数据查询出来. select语句的语法格式如下: select selection_list // 要查询的内容,选择哪些列 from table_list // 从什么表中查询,从何处选择行 where primary_