Linux0.11内核--进程调度分析之2.调度

上一篇说到进程调度归根结底是调用timer_interrupt函数,在system_call.s中:

#### int32 -- (int 0x20) 时钟中断处理程序。中断频率被设置为100Hz(include/linux/sched.h,5),
# 定时芯片8253/8254 是在(kernel/sched.c,406)处初始化的。因此这里jiffies 每10 毫秒加1。
# 这段代码将jiffies 增1,发送结束中断指令给8259 控制器,然后用当前特权级作为参数调用
# C 函数do_timer(long CPL)。当调用返回时转去检测并处理信号。
.align 2
_timer_interrupt:
push %ds 								# save ds,es and put kernel data space
push %es 								# into them. %fs is used by _system_call
push %fs
pushl %edx 							# we save %eax,%ecx,%edx as gcc doesn‘t
pushl %ecx 							# save those across function calls. %ebx
pushl %ebx 							# is saved as we use that in ret_sys_call
pushl %eax
movl $0x10,%eax 				# ds,es 置为指向内核数据段。
mov %ax,%ds
mov %ax,%es
movl $0x17,%eax 				# fs 置为指向局部数据段(出错程序的数据段)。
mov %ax,%fs
incl _jiffies
# 由于初始化中断控制芯片时没有采用自动EOI,所以这里需要发指令结束该硬件中断。
movb $0x20,%al 				# EOI to interrupt controller #1
outb %al,$0x20 					# 操作命令字OCW2 送0x20 端口。
# 下面3 句从选择符中取出当前特权级别(0 或3)并压入堆栈,作为do_timer 的参数。
movl CS(%esp),%eax
andl $3,%eax 						# %eax is CPL (0 or 3, 0=supervisor)
pushl %eax
# do_timer(CPL)执行任务切换、计时等工作,在kernel/shched.c,305 行实现。
call _do_timer 						# ‘do_timer(long CPL)‘ does everything from
addl $4,%esp 						# task switching to accounting ...
jmp ret_from_sys_call

前面一堆push指令保存当前的寄存器,然后在ret_from_sys_call中弹出。

movl $0x10,%eax把段选择子0x10也就是内核数据段选择子赋值给eax,然后再赋给ds、es;

然后_jiffies加1,jiffies在sched.h中定义:

extern long volatile jiffies;	// 从开机开始算起的滴答数(10ms/滴答)。

接下来三句指令比较关键:

movl CS(%esp),%eax
andl $3,%eax 						# %eax is CPL (0 or 3, 0=supervisor)
pushl %eax

从上面push的寄存器当中取出cs寄存器的值,也就是代码段选择子,根据选择的结构,0-1位是特权级,andl $3,%eax就是取eax中0-1位的值,然后把eax压栈当成do_timer的参数传递,4个字节。

好了,现在进入do_timer函数,在sched.c中:

//// 时钟中断C 函数处理程序,在kernel/system_call.s 中的_timer_interrupt(176 行)被调用。
// 参数cpl 是当前特权级0 或3,0 表示内核代码在执行。
// 对于一个进程由于执行时间片用完时,则进行任务切换。并执行一个计时更新工作。
void do_timer (long cpl)
{
  extern int beepcount;		// 扬声器发声时间滴答数(kernel/chr_drv/console.c,697)
  extern void sysbeepstop (void);	// 关闭扬声器(kernel/chr_drv/console.c,691)

  // 如果发声计数次数到,则关闭发声。(向0x61 口发送命令,复位位0 和1。位0 控制8253
  // 计数器2 的工作,位1 控制扬声器)。
  if (beepcount)
    if (!--beepcount)
      sysbeepstop ();

  // 如果当前特权级(cpl)为0(最高,表示是内核程序在工作),则将内核程序运行时间stime 递增;
  // [ Linus 把内核程序统称为超级用户(supervisor)的程序,见system_call.s,193 行上的英文注释]
  // 如果cpl > 0,则表示是一般用户程序在工作,增加utime。
  if (cpl)
    current->utime++;
  else
    current->stime++;

  // 如果有用户的定时器存在,则将链表第1 个定时器的值减1。如果已等于0,则调用相应的处理
  // 程序,并将该处理程序指针置为空。然后去掉该项定时器。
  if (next_timer)
    {				// next_timer 是定时器链表的头指针(见270 行)。
      next_timer->jiffies--;
      while (next_timer && next_timer->jiffies <= 0)
	{
	  void (*fn) (void);	// 这里插入了一个函数指针定义!!!??

	  fn = next_timer->fn;
	  next_timer->fn = NULL;
	  next_timer = next_timer->next;
	  (fn) ();		// 调用处理函数。
	}
    }
  // 如果当前软盘控制器FDC 的数字输出寄存器中马达启动位有置位的,则执行软盘定时程序(245 行)。
  if (current_DOR & 0xf0)
    do_floppy_timer ();
  if ((--current->counter) > 0)
    return;			// 如果进程运行时间还没完,则退出。
  current->counter = 0;
  if (!cpl)
    return;			// 对于超级用户程序(内核态程序),不依赖counter 值进行调度。
  schedule ();
}

传递来的参数cpl的作用就是如果为0,表示是内核程序,则stime加1,否则都是普通用户程序,则utime加1。

用户定时器等用到再说。

接下来判断时间片counter,在sched.h的进程描述符中:

long counter;		// long counter 任务运行时间计数(递减)(滴答数),运行时间片。

如果还有时间片则不调用调度函数schedule(),然后时间片减1并退出此函数。

如果时间片已用完(<=0),则置时间片为0,紧接着判断特权级,如果是内核级程序则直接退出函数。否则进入最核心的调度函数schedule:

/*
 * ‘schedule()‘是调度函数。这是个很好的代码!没有任何理由对它进行修改,因为它可以在所有的
 * 环境下工作(比如能够对IO-边界处理很好的响应等)。只有一件事值得留意,那就是这里的信号
 * 处理代码。
 * 注意!!任务0 是个闲置(‘idle‘)任务,只有当没有其它任务可以运行时才调用它。它不能被杀
 * 死,也不能睡眠。任务0 中的状态信息‘state‘是从来不用的。
 */
void schedule (void)
{
  int i, next, c;
  struct task_struct **p;	// 任务结构指针的指针。

  /* check alarm, wake up any interruptible tasks that have got a signal */
  /* 检测alarm(进程的报警定时值),唤醒任何已得到信号的可中断任务 */

  // 从任务数组中最后一个任务开始检测alarm。
  for (p = &LAST_TASK; p > &FIRST_TASK; --p)
    if (*p)
      {
    	// 如果设置过任务的定时值alarm,并且已经过期(alarm<jiffies),则在信号位图中置SIGALRM 信号,
    	// 即向任务发送SIGALARM 信号。然后清alarm。该信号的默认操作是终止进程。
    	// jiffies 是系统从开机开始算起的滴答数(10ms/滴答)。定义在sched.h 第139 行。
	if ((*p)->alarm && (*p)->alarm < jiffies)
	  {
	    (*p)->signal |= (1 << (SIGALRM - 1));
	    (*p)->alarm = 0;
	  }
	// 如果信号位图中除被阻塞的信号外还有其它信号,并且任务处于可中断状态,则置任务为就绪状态。
	// 其中‘~(_BLOCKABLE & (*p)->blocked)‘用于忽略被阻塞的信号,但SIGKILL 和SIGSTOP 不能被阻塞。
	if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) &&
	    (*p)->state == TASK_INTERRUPTIBLE)
	  (*p)->state = TASK_RUNNING;	//置为就绪(可执行)状态。
      }

  /* this is the scheduler proper: */
  /* 这里是调度程序的主要部分 */

  while (1)
    {
      c = -1;
      next = 0;
      i = NR_TASKS;
      p = &task[NR_TASKS];
      // 这段代码也是从任务数组的最后一个任务开始循环处理,并跳过不含任务的数组槽。比较每个就绪
      // 状态任务的counter(任务运行时间的递减滴答计数)值,哪一个值大,运行时间还不长,next 就
      // 指向哪个的任务号。
      while (--i)
	{
	  if (!*--p)
	    continue;
	  if ((*p)->state == TASK_RUNNING && (*p)->counter > c)
	    c = (*p)->counter, next = i;
	}
      // 如果比较得出有counter 值大于0 的结果,则退出124 行开始的循环,执行任务切换(141 行)。
      if (c)
	break;
      // 否则就根据每个任务的优先权值,更新每一个任务的counter 值,然后回到125 行重新比较。
      // counter 值的计算方式为counter = counter /2 + priority。[右边counter=0??]这里计算过程不考虑进程的状态。
      for (p = &LAST_TASK; p > &FIRST_TASK; --p)
	if (*p)
	  (*p)->counter = ((*p)->counter >> 1) + (*p)->priority;
    }
  // 切换到任务号为next 的任务运行。在126 行next 被初始化为0。因此若系统中没有任何其它任务
  // 可运行时,则next 始终为0。因此调度函数会在系统空闲时去执行任务0。此时任务0 仅执行
  // pause()系统调用,并又会调用本函数。
  switch_to (next);		// 切换到任务号为next 的任务,并运行之。
}

前面的比较好理解,直接分析主要部分,此部分的主要工作就是从所有的任务中找出时间片最大的任务,也就意味着运行的时间较少,next就指向这个任务并跳出循环去切换任务。

如果所有任务的时间片都为0,就根据每个任务的优先权值来更新每个任务的时间片counter值。然后重新找到next,最后切换任务,调用switch_to(next):

// 宏定义,计算在全局表中第n 个任务的TSS 描述符的索引号(选择符)。
#define _TSS(n) ((((unsigned long) n)<<4)+(FIRST_TSS_ENTRY<<3))

/*
* switch_to(n)将切换当前任务到任务nr,即n。首先检测任务n 不是当前任务,
* 如果是则什么也不做退出。如果我们切换到的任务最近(上次运行)使用过数学
* 协处理器的话,则还需复位控制寄存器cr0 中的TS 标志。
*/
// 输入:%0 - 新TSS 的偏移地址(*&__tmp.a); %1 - 存放新TSS 的选择符值(*&__tmp.b);
// dx - 新任务n 的选择符;ecx - 新任务指针task[n]。
// 其中临时数据结构__tmp 中,a 的值是32 位偏移值,b 为新TSS 的选择符。在任务切换时,a 值
// 没有用(忽略)。在判断新任务上次执行是否使用过协处理器时,是通过将新任务状态段的地址与
// 保存在last_task_used_math 变量中的使用过协处理器的任务状态段的地址进行比较而作出的。
#define switch_to(n) {struct {long a,b;} __tmp; __asm__( "cmpl %%ecx,_current\n\t" \	// 任务n 是当前任务吗?(current ==task[n]?)
  "je 1f\n\t" \			// 是,则什么都不做,退出。
  "movw %%dx,%1\n\t" \		// 将新任务的选择符??*&__tmp.b。
  "xchgl %%ecx,_current\n\t" \	// current = task[n];ecx = 被切换出的任务。
  "ljmp %0\n\t" \		// 执行长跳转至*&__tmp,造成任务切换。
// 在任务切换回来后才会继续执行下面的语句。
  "cmpl %%ecx,_last_task_used_math\n\t" \	// 新任务上次使用过协处理器吗?
  "jne 1f\n\t" \		// 没有则跳转,退出。
  "clts\n" \			// 新任务上次使用过协处理器,则清cr0 的TS 标志。
  "1:"::"m" (*&__tmp.a), "m" (*&__tmp.b),
  "d" (_TSS (n)), "c" ((long) task[n]));
}

分析这段代码前先要知道,在32位保护模式下,有2种直接发起任务切换的方法:

1.call 0x0010:0x00000000

2.jmp 0x0010:0x00000000

在这两种情况下,call和jmp指令的操作数是任务的TSS描述符选择子或任务门。当处理器执行这两条指令时,首先用指令中给出的描述符选择子访问GDT,分析它的描述符类型。如果是一般的代码段描述符,就按普通的段间转移规则执行;如果是调用门,按调用门的规则执行;如果是TSS描述符,或者任务门,则执行任务切换。此时,指令中给出的32位偏移量被忽略,原因是执行任务切换时,所有处理器的状态都可以从TSS中获得

当任务切换发生的时候,TR寄存器的内容也会跟着指向新任务的TSS。这个过程是这样的:首先,处理器将当前任务的现场信息保存到由TR寄存器指向的TSS;然后,再使TR寄存器指向新任务的TSS,并从新任务的TSS中恢复现场。

注意:任务门描述符可以安装在中断描述符表中,也可以安装在GDT或者LDT中。

知道了理论知识,上面的代码就不难分析了,关键的一句是把新任务的TSS选择子赋值给%1也就是*&_tmp.b处,现在b的值就是TSS选择子,注意这里ljmp %0相当于ljmp *%0,表示是间接跳转,相当于“ljmp *__tmp.a”,也就是跳转到地址&__tmp.a中包含的48bit逻辑地址处。而按struct _tmp的定义,这也就意味着__tmp.a即为该逻辑地址的offset部分,__tmp.b的低16bit为seg_selector(高16bit无用)部分。

直到这行指令执行完,才算真正的任务切换!至此进程调度分析结束。

时间: 2024-09-29 09:03:27

Linux0.11内核--进程调度分析之2.调度的相关文章

Linux0.11内核--进程调度分析之1.初始化

首先看main.c里的初始化函数main函数里面有个函数是对进程调度的初始化,sched_init()函数,次函数在sched.c中实现: // 调度程序的初始化子程序. void sched_init (void) { int i; struct desc_struct *p; // 描述符表结构指针. if (sizeof (struct sigaction) != 16) // sigaction 是存放有关信号状态的结构. panic ("Struct sigaction MUST be

Linux-0.11内核源代码分析系列:内存管理get_free_page()函数分析

Linux-0.11内存管理模块是源码中比較难以理解的部分,如今把笔者个人的理解发表 先发Linux-0.11内核内存管理get_free_page()函数分析 有时间再写其它函数或者文件的:) /*  *Author  : DavidLin  *Date    : 2014-11-11pm  *Email   : [email protected] or [email protected]  *world   : the city of SZ, in China  *Ver     : 000

linux0.11内核fork实现分析(不看不知道,一看很简单)

pcDuino3下支持mmc启动,官方的Uboot是采用SPL框架实现的,因为内部的SRAM空间达到32K,我们完全可以在这32K空间内编写一个完整可用小巧的bootloader来完成引导Linux kernel的目的. 我们首先介绍下SPL框架,可以先看下<GNU ARM汇编--(十八)u-boot-采用nand_spl方式的启动方法>和<GNU ARM汇编--(十九)u-boot-nand-spl启动过程分析>,NAND_SPL也算是SPL框架下的一种模式. 当使用Nand f

Linux-0.11内核内存管理get_free_page()函数分析

/* *Author : DavidLin*Date : 2014-11-11pm*Email : [email protected] or [email protected]*world : the city of SZ, in China*Ver : 000.000.001*history : editor time do 1)LinPeng 2014-11-11 created this file! 2)*/Linux-0.11内存管理模块是源代码中比较难以理解的部分,现在把笔者个人的理解

Linux-0.11内核源码分析系列:关于线性地址,逻辑地址,物理地址的关系与区别

/* *Author : DavidLin *Date : 2014-11-22pm *Email : [email protected] or [email protected] *world : the city of SZ, in China *Ver : 000.000.001 *history : editor time do * 1)LinPeng 2014-11-22 created this file! * 2) */     以下所有描述基于Linux0.11内核及其所编写的年

Linux0.11内核剖析–内核体系结构 &#169;Fanwu

Linux0.11内核剖析–内核体系结构 ©Fanwu <Linux内核完全注释>下载:http://files.cnblogs.com/files/HanBlogs/linux-kernel.pdf(进入pdf后要点击右下角保存喔^_^) 一个完整可用的操作系统主要由 4 部分组成:硬件.操作系统内核.操作系统服务和用户应用程序,如下图所示: 用户应用程序是指那些字处理程序. Internet 浏览器程序或用户自行编制的各种应用程序: 操作系统服务程序是指那些向用户所提供的服务被看作是操作系

一站式linux0.11内核head.s代码段图表详解

阅读本文章需要的基础: 计算机组成原理:针对8086,80386CPU架构的计算机硬件体系要有清楚的认知,我们都知道操作系统是用来管理硬件的,那我们就要对本版本的操作系统所依赖的硬件体系有系统的了解,有了系统的了解后才能全面的管理它,我们对8086,80386CPU架构的计算机硬件体系如果有非常深刻的认识,我们看源代码内核的时候,就可以更可能的以一种开发者的角度去思考代码的作用,先从全局的角度去思考问题,而不是采用一种众人摸象的思维从头看到末尾. 计算机编程C语言基础:linux内核基本都是用C

bochs+gdb联调linux-0.11内核

什么是网络营销,网络营销的方式有哪些?相信这样的问题大家谈的都比较多,每个人都能说出一二三来.然而再强的理论知识却代表不了实际情况.我们怎样去做网络营销,今天守护袁昆就以微信为切入点谈谈自己的看法. 对于网络营销的理解每个人都有偏重点,守护认为网络营销可以细分下来.网:互联网;络:交流联络;营:人员聚合;销:销售与售后.有兴趣的朋友可以去看看<什么才是真正的网络营销>.网络营销是一种通过互联网进行交流找到自己目标用户形成交易行为的过程.那么为什么有人做的好,有人却做不出效果?主要原因还是在于用

Ubuntu 12.10安装Bochs 2.6, 调试linux-0.11内核

http://blog.csdn.net/sinzou1/article/details/5903968 Linux(ubuntu)安装bochs http://wenku.baidu.com/view/f968e23b0912a21614792914.html ubuntu下安装bochs http://www.linuxidc.com/Linux/2011-07/38371.html Ubuntu 10.04安装Bochs 2.4.5笔记 http://blog.csdn.net/trace