[vijos 1770]大内密探

描述

在古老的皇宫中,有N个房间以及N-1条双向通道,每条通道连接着两个不同的房间,所有的房间都能互相到达。皇宫中有许多的宝物,所以需要若干个大内密探来守护。一个房间被守护当切仅当该房间内有一名大内密探或者与该房间直接相邻的房间内有大内密探。

现在身为大内密探零零七的你想知道要把整个皇宫守护好至少需要多少名大内密探以及有多少种安排密探的方案。两种方案不同当且仅当某个房间在一种方案有密探而在另一个方案内没有密探。

格式

输入格式

第一行一个正整数N.(1<=N<=100000)
后面N-1行,每行两个正整数a和b,表示房间a和房间b之间有一条无向通道。

房间的编号从1到N

输出格式

第一行输出正整数K,表示最少安排的大内密探。

第二行输出整数S,表示有多少种方案安排最少的密探,由于结果可能较大,请输出方案数mod 1000000007的余数。

样例1

样例输入1[复制]
7
2 1
3 1
4 2
5 1
6 2
7 6
样例输出1[复制]
3
4
 
首先这是两个子问题
第一问是比较基本的树形dp
f[i][0] i的子树中,i被覆盖但不取i的方案数
f[i][1] i被覆盖,没有其他限制的方案数
f[i][2] i点不取且i不被儿子覆盖的方案数
第二问 g[i][0~3]表示上面三个对应的方案数
第一问的转移
然后为了方便g的计算,我们一会再讨论f[i][0]的转移
那么如何来搞这个g呢。。
首先g[i][1,2]随便加法乘法原理算算就好了,但是g[i][0]比较蛋疼
首先一般我们会这样算f[i][0]
这样会在转移g的时候出现重复状态

然后我们发现可以对后面一坨维护一下前缀和和后缀和避免重复
实现细节看代码
#include<map>
#include<stack>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<complex>
#include<iostream>
#include<assert.h>
#include<algorithm>
using namespace std;
using namespace std;
#define pb push_back
#define inf 1001001001
#define infll 1001001001001001001LL
#define FOR0(i,n) for(int (i)=0;(i)<(n);++(i))
#define FOR1(i,n) for(int (i)=1;(i)<=(n);++(i))
#define mp make_pair
#define pii pair<int,int>
#define ll long long
#define ld double
#define vi vector<int>
#define SZ(x) ((int)((x).size()))
#define fi first
#define se second
#define RI(n) int (n); scanf("%d",&(n));
#define RI2(n,m) int (n),(m); scanf("%d %d",&(n),&(m));
#define RI3(n,m,k) int (n),(m),(k); scanf("%d %d %d",&(n),&(m),&(k));
template<typename T,typename TT> ostream& operator<<(ostream &s,pair<T,TT> t) {return s<<"("<<t.first<<","<<t.second<<")";}
template<typename T> ostream& operator<<(ostream &s,vector<T> t){FOR0(i,sz(t))s<<t[i]<<" ";return s; }
#define dbg(vari) cerr<<#vari<<" = "<<(vari)<<endl
#define all(t) t.begin(),t.end()
#define FEACH(i,t) for (typeof(t.begin()) i=t.begin(); i!=t.end(); i++)
#define TESTS RI(testow)while(testow--)
#define FORZ(i,a,b) for(int (i)=(a);(i)<=(b);++i)
#define FORD(i,a,b) for(int (i)=(a); (i)>=(b);--i)
#define gmax(a,b) (a)=max((a),(b))
#define gmin(a,b) (a)=min((a),(b))
#define ios0 ios_base::sync_with_stdio(0)
#define Ri register int
#define gc getchar()
#define il inline
il int read(){
    bool f=true;
    Ri x=0;char ch;
    while(!isdigit(ch=gc))
        if(ch==‘-‘)f=false;
    while(isdigit(ch)){
        x=(x<<1)+(x<<3)+ch-‘0‘;
        ch=gc;
    }
    return f?x:-x;
}
#define gi read()
#define FO(x) freopen(#x".in","r",stdin),freopen(#x".out","w",stdout);
#define childs(x,i) for(int i=last[x]; i; i=e[i].next)
const int N=100005,mod=1000000007;
int last[N],cnt,n,l,f[N][3],r[N],st[N];
ll d[N][3],suml,sumr[N];
struct edge{
    int to,next;
}e[230000];
ll mul(ll a,ll b){
    return ((a%mod)*(b%mod))%mod;
}
ll Plus(ll a,ll b){
    return (a%mod+b%mod)%mod;
}
void insert(int u, int v) {
    e[++cnt].next=last[u];last[u]=cnt;e[cnt].to=v;
    e[++cnt].next=last[v];last[v]=cnt;e[cnt].to=u;
}

void dfs(int x,int fa) {
    int t1=1,t2=0,s1=1,s2=1,ch;
    childs(x,i)
        if((ch=e[i].to)!=fa) {
            ll T=0;
            dfs(ch,x);
            int mn=min(min(f[ch][0],f[ch][1]),f[ch][2]);
            FOR0(j,3)
                if(f[ch][j]==mn) T+=d[ch][j];
            s1=mul(s1,T);
            T=0;
            s2=mul(s2,d[ch][0]);
             t1+=mn;
            t2+=f[ch][0];
        }
    f[x][1]=t1;
    f[x][2]=t2;
    d[x][1]=s1;
    d[x][2]=s2;
    int sz=0;
    childs(x,i) if(e[i].to!=fa) st[++sz]=e[i].to;
    r[sz+1]=0;
    sumr[sz+1]=1;suml=1;l=0;
    FORD(i,sz,1) {
        ch=st[i];
        ll T=0;
        int mn=min(f[ch][0],f[ch][1]);
        FOR0(j,2)if(f[ch][j]==mn) T+=d[ch][j];
        r[i]=r[i+1]+mn;
        sumr[i]=mul(sumr[i+1],T);
    }
    f[x][0]=N;
    FOR1(i,sz){
        int fyb=l+f[st[i]][1]+r[i+1];
        if(fyb<f[x][0])    f[x][0]=fyb,d[x][0]=mul(d[st[i]][1],mul(suml,sumr[i+1]));
        else if(fyb==f[x][0])     d[x][0]=Plus(d[x][0],mul(d[st[i]][1],mul(suml,sumr[i+1])));
        if(f[st[i]][0]==N) break;
        l+=f[st[i]][0];
        suml=mul(suml,d[st[i]][0]);
    }
}
int main() {
    RI(n);
    FOR1(i,n-1)
        insert(gi,gi);
    int root=1;
    dfs(root,-1);
    int ans1=min(f[root][1],f[root][0]),ans2=0;
    if(ans1==f[root][0])
        ans2=Plus(ans2,d[root][0]);
    if(ans1==f[root][1])
        ans2=Plus(ans2,d[root][1]);
    printf("%d\n%d\n",ans1,ans2);
    return 0;
}
时间: 2024-10-12 20:05:55

[vijos 1770]大内密探的相关文章

【vijos】1770 大内密探(树形dp+计数)

https://vijos.org/p/1770 不重不漏地设计状态才能正确的计数QAQ 虽然可能最优化是正确的,但是不能保证状态不相交就是作死.... 之前设的状态错了... 应该设 f[i][0]表示i点不取且至少有一个儿子取,且保证i点被覆盖 f[i][1]表示i点取儿子任意,且保证i点被覆盖 f[i][2]表示i点不取且i点的儿子也不取,保证i点不被覆盖!(即留给父亲覆盖) f[i][2]表示i点不取且儿子也不取.并不是表示i点不取儿子任意!!!!!!!!!!要不然这样会出现交的情况!假

Vijos p1770 大内密探 树形DP+计数

4天终于做出来了,没错我就是这么蒟蒻.教训还是很多的. 建议大家以后编树形DP不要用记忆化搜索,回溯转移状态个人感觉更有条理性. 大神题解传送门 by iwtwiioi 我的题解大家可以看注释"//"部分 本题我用的树形DP中dp[x][fa][need]表示编号为x的节点的父亲选(1)没选(0),x的父亲需(1)不需要(0)其他节点来覆盖. 若父亲节点选了,则need肯定为0,所以不存在fa==1而need==1的状态,相当于浪费了¼的空间.毕竟数据范围比较小,而且程序要有可读性!程

Vijos P1066 弱弱的战壕【多解,线段树,暴力,树状数组】

弱弱的战壕 描述 永恒和mx正在玩一个即时战略游戏,名字嘛~~~~~~恕本人记性不好,忘了-_-b. mx在他的基地附近建立了n个战壕,每个战壕都是一个独立的作战单位,射程可以达到无限(“mx不赢定了?!?”永恒[email protected][email protected]). 但是,战壕有一个弱点,就是只能攻击它的左下方,说白了就是横纵坐标都不大于它的点(mx:“我的战壕为什么这么菜”ToT).这样,永恒就可以从别的地方进攻摧毁战壕,从而消灭mx的部队. 战壕都有一个保护范围,同它的攻击

Vijos P1785 同学排序【模拟】

同学排序 描述 现有m位同学,第1位同学为1号,第2位同学为2号,依次第m位同学为m号.要求双号的学生站出来,然后余下的重新组合,组合完后,再次让双号的学生站出来,重复n次,问这时有多少同学出来站着? 样例1 样例输入1 1989 5 样例输出1 1926 限制 1s 提示 [数据范围] 1≤n≤10 100≤m≤100000 题目链接:https://vijos.org/p/1785 分析:站出序号为偶数的人,如果总人数为奇数,剩余人数向上取整再折半就好了! 下面给出AC代码: 1 #incl

Vijos 1057 盖房子

二次联通门 : Vijos 1057 盖房子 /* Vijos 1057 盖房子 简单的dp 当前点(i, j)所能构成的最大的正方形的边长 为点(i - 1, j - 1)与(i, j - 1), (i - 1, j)三点中最小的边长构成.. 一遍递推, 一边取最大即可 */ #include <cstdio> #define Max 1009 inline int min (int a, int b) { return a < b ? a : b; } inline int max

Vijos 1193 扫雷 【动态规划】

扫雷 描述 相信大家都玩过扫雷的游戏.那是在一个n*n的矩阵里面有一些雷,要你根据一些信息找出雷来.万圣节到了,"余"任过流行起了一种简单的扫雷游戏,这个游戏规则和扫雷一样,如果某个格子没有雷,那么它里面的数字表示和他8连通的格子里面雷的数目.现在棋盘是n*2的,第一列里某些格子是雷,而第二列没有雷,如:o 1* 2* 3* 2o 2* 2* 2 ('*'代表有雷,'o'代表无雷)由于第一类的雷有可能有多种方案满足第二列的数的限制,你的任务即根据第二列的信息求第一列雷有多少中摆放方案.

Vijos 1523 贪吃的九头龙 【树形DP】

贪吃的九头龙 背景 安徽省芜湖市第二十七中学测试题 NOI 2002 贪吃的九头龙(dragon) Description:OfficialData:OfficialProgram:Converted by JackDavid127 描述 传说中的九头龙是一种特别贪吃的动物.虽然名字叫"九头龙",但这只是说它出生的时候有九个头,而在成长的过程中,它有时会长出很多的新头,头的总数会远大于九,当然也会有旧头因衰老而自己脱落. 有一天,有M个脑袋的九头龙看到一棵长有N个果子的果树,喜出望外,

vijos P1448 校门外的树

描述 校门外有很多树,有苹果树,香蕉树,有会扔石头的,有可以吃掉补充体力的……如今学校决定在某个时刻在某一段种上一种树,保证任一时刻不会出现两段相同种类的树,现有两个操作:K=1,K=1,读入l.r表示在区间[l,r]中种上一种树,每次操作种的树的种类都不同K=2,读入l,r表示询问l~r之间能见到多少种树(l,r>0) 输入格式 第一行n,m表示道路总长为n,共有m个操作接下来m行为m个操作 输出格式 对于每个k=2输出一个答案 提示 范围:20%的数据保证,n,m<=10060%的数据保证

Vijos P1061 迎春舞会之三人组舞 DP

题目链接:https://vijos.org/p/1061 n个人选出3*m人,排成m组,每组3人. 站的队形——较矮的2个人站两侧,最高的站中间. 从对称学角度来欣赏,左右两个人的身高越接近,则这一组的“残疾程度”越低. 计算公式为 h=(a-b)^2 (a.b为较矮的2人的身高)现在候选人有n个人,要从他们当中选出3*m个人排舞蹈,要求总体的“残疾程度”最低; input: 第一排为m,n. 第二排n个数字,保证升序排列. 思路:由于和中间高的人无关,但是每次选旁边两个的时候,会由于没有比这