题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5014
Number Sequence
Problem Description
There is a special number sequence which has n+1 integers. For each number in sequence, we have two rules:
● ai ∈ [0,n]
● ai ≠ aj( i ≠ j )
For sequence a and sequence b, the integrating degree t is defined as follows(“⊕” denotes exclusive or):
t = (a0 ⊕ b0) + (a1 ⊕ b1) +···+ (an ⊕ bn)
(sequence B should also satisfy the rules described above)
Now give you a number n and the sequence a. You should calculate the maximum integrating degree t and print the sequence b.
Input
There are multiple test cases. Please process till EOF.
For each case, the first line contains an integer n(1 ≤ n ≤ 105), The second line contains a0,a1,a2,...,an.
Output
For each case, output two lines.The first line contains the maximum integrating degree t. The second line contains n+1 integers b0,b1,b2,...,bn. There is exactly one space between bi and bi+1(0
≤ i ≤ n - 1). Don’t ouput any spaces after bn.
Sample Input
4 2 0 1 4 3
Sample Output
20 1 0 2 3 4
Source
2014 ACM/ICPC Asia Regional Xi‘an Online
HDU坑爹爆long long,换了__int64过了。想法很简单,把两个数二进制的0和1尽量补全,优先满足大的数就可以了。不过要找到区间。
代码:
#include <iostream> #include <cstdio> using namespace std; __int64 n, a[100010]; struct right { __int64 s, r, l; }rt[1000]; __int64 getNear(__int64 x) { __int64 z = 1; while(x) { x >>= 1; z <<= 1; } return z-1; } int main() { while(~scanf("%I64d", &n)) { __int64 m = n; rt[0].r = m; rt[0].s = getNear(m); rt[0].l = rt[0].s-rt[0].r; //cout << rt[0].l << " " << rt[0].r << " " << rt[0].s << endl; __int64 cnt = 0; while(1) { m = rt[cnt].l-1; if(m < 0) break; cnt++; rt[cnt].r = m; rt[cnt].s = getNear(m); rt[cnt].l = rt[cnt].s-rt[cnt].r; //cout << rt[cnt].l << " " << rt[cnt].r << " " << rt[cnt].s << endl; } for(__int64 i = 0; i <= n; i++) scanf("%I64d", &a[i]); //a[i] = i; __int64 t = 0; for(__int64 i = 0; i <= n; i++) for(__int64 j = 0; j <= cnt; j++) { if(a[i] >= rt[j].l && a[i] <= rt[j].r) { //cout << rt[j].l << " " << rt[j].r << " " << rt[j].s << endl; //printf("%d ", rt[j].s-a[i]); a[i] = rt[j].s-a[i]; t += rt[j].s; break; } } printf("%I64d\n", t); for(__int64 i = 0; i < n; i++) printf("%I64d ", a[i]); printf("%I64d\n", a[n]); } return 0; }
HDU 5014 Number Sequence(2014 ACM/ICPC Asia Regional Xi'an Online) 题解