UVa 12096 The SetStack Computer

Description

Background from Wikipedia: "Set theory is a branch of mathematics created principally by the German mathematician Georg Cantor at the end of the 19th century. Initially controversial, set theory has come to play the role of a foundational theory in modern mathematics, in the sense of a theory invoked to justify assumptions made inmathematics concerning the existence of mathematical objects (such as numbers or functions) and their properties. Formal versions of set theory also have a foundational role to play as specifying a theoretical ideal of mathematical rigor in proofs."

Given this importance of sets, being the basis of mathematics, a set
of eccentric theorist set off to construct a supercomputer operating on
sets instead of numbers. The initial Set-Stack Alpha is under
construction, and they need you to simulate it in order to verify the
operation of the prototype.

The computer operates on a single stack of sets, which is initially
empty. After each operation, the cardinality of the topmost set on the
stack is output. The cardinality of a set S is denoted |S| and is the
number of elements in S. The instruction set of the SetStack Alpha is
PUSH, DUP, UNION, INTERSECT, and ADD.

  • PUSH will push the empty set {} on the stack.
  • DUP will duplicate the topmost set (pop the stack, and then push that set on the stack twice).
  • UNION will pop the stack twice and then push the union of the two sets on the stack.
  • INTERSECT will pop the stack twice and then push the intersection of the two sets on the stack.
  • ADD will pop the stack twice, add the first set to the second one, and then push the resulting set on the stack.

For illustration purposes, assume that the topmost element of the stack is

A = {{}, {{}}}

and that the next one is

B = {{}, {{{}}}}.

For these sets, we have |A| = 2 and |B| = 2. Then:

  • UNION would result in the set { {}, {{}}, {{{}}} }. The output is 3.
  • INTERSECT would result in the set { {} }. The output is 1.
  • ADD would result in the set { {}, {{{}}}, {{},{{}}} }. The output is 3.

Input

An
integer 0 ≤ T ≤ 5 on the first line gives the cardinality of the set of
test cases. The first line of each test case contains the number of
operations 0 ≤ N ≤ 2 000. Then follow N lines each containing one of the
five commands. It is guaranteed that the SetStack computer can execute
all the commands in the sequence without ever popping an empty stack.

Output

For
each operation specified in the input, there will be one line of output
consisting of a single integer. This integer is the cardinality of the
topmost element of the stack after the corresponding command has
executed. After each test case there will be a line with *** (three
asterisks).

Sample Input

2
9
PUSH
DUP
ADD
PUSH
ADD
DUP
ADD
DUP
UNION
5
PUSH
PUSH
ADD
PUSH
INTERSECT

Sample Output

0
0
1
0
1
1
2
2
2
***
0
0
1
0
0
***

解析:运用STL可方便地解决这个问题。用vector来存储各个不同的集合,运用map将集合映射为vector中相应的下标。集合的操作UNION、INTERSECT、ADD可分别用algorithm中的set_union、set_intersection以及set自带的insert完成,按题意运用stack模拟栈操作即可。

 1 #include <iostream>
 2 #include <set>
 3 #include <map>
 4 #include <vector>
 5 #include <stack>
 6 #include <algorithm>
 7 using namespace std;
 8
 9 map<set<int>, int> id;
10 map<set<int>, int>::iterator it;
11 vector<set<int> > v;
12
13 int getID(set<int> x)
14 {
15     it = id.find(x);
16     if(it != id.end())
17         return it->second;
18     v.push_back(x);
19     return id[x] = v.size()-1;
20 }
21
22 int main()
23 {
24     int T, n;
25     cin>>T;
26     while(T--){
27         cin>>n;
28         id.clear();
29         v.clear();
30         stack<int> s;
31         string op;
32         while(n--){
33             cin>>op;
34             if(op[0] == ‘P‘)
35                 s.push(getID(set<int>()));
36             else if(op[0] == ‘D‘)
37                 s.push(s.top());
38             else{
39                 set<int> t1 = v[s.top()]; s.pop();
40                 set<int> t2 = v[s.top()]; s.pop();
41                 set<int> t;
42                 if(op[0] == ‘U‘){
43                     set_union(t1.begin(), t1.end(), t2.begin(), t2.end(), inserter(t, t.begin()));
44                     s.push(getID(t));
45                 }
46                 else if(op[0] == ‘I‘){
47                     set_intersection(t1.begin(), t1.end(), t2.begin(), t2.end(), inserter(t, t.begin()));
48                     s.push(getID(t));
49                 }
50                 else if(op[0] == ‘A‘){
51                     t2.insert(getID(t1));
52                     s.push(getID(t2));
53                 }
54             }
55             cout<<v[s.top()].size()<<endl;
56         }
57         cout<<"***"<<endl;
58     }
59     return 0;
60 }
时间: 2024-10-07 17:14:50

UVa 12096 The SetStack Computer的相关文章

uva 12096 - The SetStack Computer(STL)

UVA 12096 - The SetStack Computer 题目链接 题意:几个操作,push是在栈顶加入一个空集,dup是复制栈顶集合,在放入栈顶,union是把头两个取并集放回,int是头两个取交集放回,add是取头两个,把第一个当成一个集合加入第二个,每次操作输出栈顶集合的里面的个数 思路:用set,stack模拟,然后利用map去hash一个集合,模拟即可 代码: #include <cstdio> #include <cstring> #include <s

UVA - 12096 The SetStack Computer(编码,STL)

12096 The SetStack Computer Background from Wikipedia: "Set theory is a branch of mathematics created principally by the German mathe-matician Georg Cantor at the end of the 19th century.Initially controversial, set theory has come to play the role o

uva 12096 The SetStack Computer(STL set)

题意: 有5种操作: PUSH:加入"{}"空集合入栈. DUP:栈顶元素再入栈. UNION:出栈两个集合,取并集入栈. INTERSECT:出栈两个集合,取交集入栈. ADD:出栈两个集合,将先出栈的加入到后出栈的集合中. 输入不超过2000, 保证操作顺利进行. 分析: 用set<int>(本身又可以映射成一个int)去模拟集合,所以可以将不同的集合映射成int型. 用一个Map<set<int>,int> 去映射成不同的int. 以后需要se

uva 12096 - The SetStack Computer(STL 的运用)

这道题目貌似就是在不停地用STL中的内容,对STL熟练运用的大神估计坐起来会比较easy.. 不过对于我这种看着代码还是需要上网查函数运用的菜鸟来说,若让我自己做这道题,肯定不会使用STL.. 就当对STL的学习了. #include<cstdio> #include<iostream> #include<cstring> #include<string> #include<set> #include<stack> #include&

UVa - 12096 The SetStack Computer(STL容器综合,强推!)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=42064 #include <iostream> #include <algorithm> #include <string> #include <map> #include <set> #include <vector> #include <stack> #define ALL(x) x.b

UVAOJ 12096 The SetStack Computer(STL的运用)

12096 The SetStack Computer Background from Wikipedia: Set theory is a branch ofmathematics created principally by the German mathe-matician Georg Cantor at the end of the 19th century. Initially controversial, set theory has come to play therole of

12096 - The SetStack Computer UVA

Background from Wikipedia: \Set theory is a branch of mathematics created principally by the German mathematician Georg Cantor at the end of the 19th century. Initially controversial, set theory has come to play the role of a foundational theory in m

12096 - The SetStack Computer

The SetStack Computer PS:因为该题排版较麻烦,这里给出OJ网址:UVa12096 - The SetStack Computer 有一个专门为了集合运算而设计的"集合栈"计算机.该机器有一个初始为空的栈,并且支持以下操作. PUSH:空集"{}"入栈. DUP:把当前栈顶元素复制一份后再入栈. UNION:出栈两个集合,然后把二者的并集入栈. INTERSECT:出栈两个集合,然后把二者的交集入栈. ADD:出栈两个集合,然后把先出栈的集合加

UVa12096 - The SetStack Computer

The computer op erates on a single stack of sets, which is initially empty. After each op eration, the cardinality of the topmost set on the stack is output. The cardinality of a set S is denoted | S | and is thenumber of elements in S. The instructi