Codeforces Round #328 (Div. 2) B

Description

Ari the monster always wakes up very early with the first ray of the sun and the first thing she does is feeding her squirrel.

Ari draws a regular convex polygon on the floor and numbers it‘s vertices 1, 2, ..., n in clockwise order. Then starting from the vertex 1 she draws a ray in the direction of each other vertex. The ray stops when it reaches a vertex or intersects with another ray drawn before. Ari repeats this process for vertex 2, 3, ..., n (in this particular order). And then she puts a walnut in each region inside the polygon.

Ada the squirrel wants to collect all the walnuts, but she is not allowed to step on the lines drawn by Ari. That means Ada have to perform a small jump if she wants to go from one region to another. Ada can jump from one region P to another region Q if and only if P and Q share a side or a corner.

Assuming that Ada starts from outside of the picture, what is the minimum number of jumps she has to perform in order to collect all the walnuts?

Input

The first and only line of the input contains a single integer n (3 ≤ n ≤ 54321) - the number of vertices of the regular polygon drawn by Ari.

Output

Print the minimum number of jumps Ada should make to collect all the walnuts. Note, that shedoesn‘t need to leave the polygon after.

Examples

input

5

output

9

input

3

output

1

Note

One of the possible solutions for the first sample is shown on the picture above.

找规律,就是正多边形,顶点相连,已经相连的后面的就会截断,问能划分多少区域

#include<bits/stdc++.h>
using namespace std;
int main()
{
    long long n;
    cin>>n;
    cout<<(n-2)*(n-2)<<endl;
    return 0;
}

  

时间: 2024-12-23 10:12:45

Codeforces Round #328 (Div. 2) B的相关文章

Codeforces Round #328 (Div. 2) A

Description Galois is one of the strongest chess players of Byteforces. He has even invented a new variant of chess, which he named «PawnChess». This new game is played on a board consisting of 8 rows and 8 columns. At the beginning of every game som

Codeforces Round #328 (Div. 2)

A. PawnChess 很简单的暴力. #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<list> #include<deque> #include&l

随笔—邀请赛前训—Codeforces Round #328 (Div. 2) A. PawnChess

题意:给你一个8×8的棋盘分布,红黑棋子,双方只能朝上下其中一个方向移动,不可跨越对方或自己的棋子,最先到对面底部的人赢.问谁赢? 思路:上下2排同时开始扫,先扫到谁都棋,谁就赢(前提是没有对方的人挡路..) #include<cstdio> #include<cstring> #include<iostream> using namespace std; #define MAX(x,y) (((x)>(y)) ? (x) : (y)) #define MIN(x

Codeforces Round #279 (Div. 2) ABCD

Codeforces Round #279 (Div. 2) 做得我都变绿了! Problems # Name     A Team Olympiad standard input/output 1 s, 256 MB  x2377 B Queue standard input/output 2 s, 256 MB  x1250 C Hacking Cypher standard input/output 1 s, 256 MB  x740 D Chocolate standard input/

Codeforces Round #428 (Div. 2)

Codeforces Round #428 (Div. 2) A    看懂题目意思就知道做了 #include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define rep(i,a,b) for (int i=a; i<=b; ++i) #define per(i,b,a) for (int i=b; i>=a; --i

Codeforces Round #424 (Div. 2) D. Office Keys(dp)

题目链接:Codeforces Round #424 (Div. 2) D. Office Keys 题意: 在一条轴上有n个人,和m个钥匙,门在s位置. 现在每个人走单位距离需要单位时间. 每个钥匙只能被一个人拿. 求全部的人拿到钥匙并且走到门的最短时间. 题解: 显然没有交叉的情况,因为如果交叉的话可能不是最优解. 然后考虑dp[i][j]表示第i个人拿了第j把钥匙,然后 dp[i][j]=max(val(i,j),min(dp[i-1][i-1~j]))   val(i,j)表示第i个人拿

Codeforces Round #424 (Div. 2) C. Jury Marks(乱搞)

题目链接:Codeforces Round #424 (Div. 2) C. Jury Marks 题意: 给你一个有n个数序列,现在让你确定一个x,使得x通过挨着加这个序列的每一个数能出现所有给出的k个数. 问合法的x有多少个.题目保证这k个数完全不同. 题解: 显然,要将这n个数求一下前缀和,并且排一下序,这样,能出现的数就可以表示为x+a,x+b,x+c了. 这里 x+a,x+b,x+c是递增的.这里我把这个序列叫做A序列 然后对于给出的k个数,我们也排一下序,这里我把它叫做B序列,如果我

[Codeforces] Round #352 (Div. 2)

人生不止眼前的狗血,还有远方的狗带 A题B题一如既往的丝帛题 A题题意:询问按照12345678910111213...的顺序排列下去第n(n<=10^3)个数是多少 题解:打表,输出 1 #include<bits/stdc++.h> 2 using namespace std; 3 int dig[10],A[1005]; 4 int main(){ 5 int aa=0; 6 for(int i=1;;i++){ 7 int x=i,dd=0; 8 while(x)dig[++dd

Codeforces Round #273 (Div. 2)

Codeforces Round #273 (Div. 2) 题目链接 A:签到,仅仅要推断总和是不是5的倍数就可以,注意推断0的情况 B:最大值的情况是每一个集合先放1个,剩下都丢到一个集合去,最小值是尽量平均去分 C:假如3种球从小到大是a, b, c,那么假设(a + b) 2 <= c这个比較明显答案就是a + b了.由于c肯定要剩余了,假设(a + b)2 > c的话,就肯定能构造出最优的(a + b + c) / 3,由于肯定能够先拿a和b去消除c,而且控制a和b成2倍关系或者消除