数据库分库分表

数据库分库分表

前言

公司最近在搞服务分离,数据切分方面的东西,因为单张包裹表的数据量实在是太大,并且还在以每天60W的量增长。 之前了解过数据库的分库分表,读过几篇博文,但就只知道个模糊概念, 而且现在回想起来什么都是模模糊糊的。

今天看了一下午的数据库分库分表,看了很多文章,现在做个总结,“摘抄”下来。(但更期待后期的实操) 会从以下几个方面说起: 第一部分:实际网站发展过程中面临的问题。 第二部分:有哪几种切分方式,垂直和水平的区别和适用面。 第三部分:目前市面有的一些开源产品,技术,它们的优缺点是什么。 第四部分:可能是最重要的,为什么不建议水平分库分表!?这能让你能在规划前期谨慎的对待,规避掉切分造成的问题。

名词解释

库:database;表:table;分库分表:sharding

数据库架构演变

刚开始我们只用单机数据库就够了,随后面对越来越多的请求,我们将数据库的写操作和读操作进行分离, 使用多个从库副本(Slaver Replication)负责读,使用主库(Master)负责写, 从库从主库同步更新数据,保持数据一致。架构上就是数据库主从同步。 从库可以水平扩展,所以更多的读请求不成问题。

但是当用户量级上来后,写请求越来越多,该怎么办?加一个Master是不能解决问题的, 因为数据要保存一致性,写操作需要2个master之间同步,相当于是重复了,而且更加复杂。

这时就需要用到分库分表(sharding),对写操作进行切分。

分库分表前的问题

任何问题都是太大或者太小的问题,我们这里面对的数据量太大的问题。

用户请求量太大

因为单服务器TPS,内存,IO都是有限的。 解决方法:分散请求到多个服务器上; 其实用户请求和执行一个sql查询是本质是一样的,都是请求一个资源,只是用户请求还会经过网关,路由,http服务器等。

单库太大

单个数据库处理能力有限;单库所在服务器上磁盘空间不足;单库上操作的IO瓶颈 解决方法:切分成更多更小的库

单表太大

CRUD都成问题;索引膨胀,查询超时 解决方法:切分成多个数据集更小的表。

分库分表的方式方法

一般就是垂直切分和水平切分,这是一种结果集描述的切分方式,是物理空间上的切分。 我们从面临的问题,开始解决,阐述: 首先是用户请求量太大,我们就堆机器搞定(这不是本文重点)。

然后是单个库太大,这时我们要看是因为表多而导致数据多,还是因为单张表里面的数据多。 如果是因为表多而数据多,使用垂直切分,根据业务切分成不同的库。

如果是因为单张表的数据量太大,这时要用水平切分,即把表的数据按某种规则切分成多张表,甚至多个库上的多张表。 分库分表的顺序应该是先垂直分,后水平分。 因为垂直分更简单,更符合我们处理现实世界问题的方式。

垂直拆分

  1. 垂直分表

    也就是“大表拆小表”,基于列字段进行的。一般是表中的字段较多,将不常用的, 数据较大,长度较长(比如text类型字段)的拆分到“扩展表“。 一般是针对那种几百列的大表,也避免查询时,数据量太大造成的“跨页”问题。

  2. 垂直分库

    垂直分库针对的是一个系统中的不同业务进行拆分,比如用户User一个库,商品Producet一个库,订单Order一个库。 切分后,要放在多个服务器上,而不是一个服务器上。为什么? 我们想象一下,一个购物网站对外提供服务,会有用户,商品,订单等的CRUD。没拆分之前, 全部都是落到单一的库上的,这会让数据库的单库处理能力成为瓶颈。按垂直分库后,如果还是放在一个数据库服务器上, 随着用户量增大,这会让单个数据库的处理能力成为瓶颈,还有单个服务器的磁盘空间,内存,tps等非常吃紧。 所以我们要拆分到多个服务器上,这样上面的问题都解决了,以后也不会面对单机资源问题。

    数据库业务层面的拆分,和服务的“治理”,“降级”机制类似,也能对不同业务的数据分别的进行管理,维护,监控,扩展等。 数据库往往最容易成为应用系统的瓶颈,而数据库本身属于“有状态”的,相对于Web和应用服务器来讲,是比较难实现“横向扩展”的。 数据库的连接资源比较宝贵且单机处理能力也有限,在高并发场景下,垂直分库一定程度上能够突破IO、连接数及单机硬件资源的瓶颈。

水平拆分

  1. 水平分表

    针对数据量巨大的单张表(比如订单表),按照某种规则(RANGE,HASH取模等),切分到多张表里面去。 但是这些表还是在同一个库中,所以库级别的数据库操作还是有IO瓶颈。不建议采用。

  2. 水平分库分表

    将单张表的数据切分到多个服务器上去,每个服务器具有相应的库与表,只是表中数据集合不同。 水平分库分表能够有效的缓解单机和单库的性能瓶颈和压力,突破IO、连接数、硬件资源等的瓶颈。

  3. 水平分库分表切分规则
    1. RANGE

      从0到10000一个表,10001到20000一个表;

    2. HASH取模

      一个商场系统,一般都是将用户,订单作为主表,然后将和它们相关的作为附表,这样不会造成跨库事务之类的问题。 取用户id,然后hash取模,分配到不同的数据库上。

    3. 地理区域

      比如按照华东,华南,华北这样来区分业务,七牛云应该就是如此。

    4. 时间

      按照时间切分,就是将6个月前,甚至一年前的数据切出去放到另外的一张表,因为随着时间流逝,这些表的数据 被查询的概率变小,所以没必要和“热数据”放在一起,这个也是“冷热数据分离”。

分库分表后面临的问题

事务支持

分库分表后,就成了分布式事务了。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价; 如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。

多库结果集合并(group by,order by)

TODO

跨库join

TODO 分库分表后表之间的关联操作将受到限制,我们无法join位于不同分库的表,也无法join分表粒度不同的表, 结果原本一次查询能够完成的业务,可能需要多次查询才能完成。 粗略的解决方法: 全局表:基础数据,所有库都拷贝一份。 字段冗余:这样有些字段就不用join去查询了。 系统层组装:分别查询出所有,然后组装起来,较复杂。

分库分表方案产品

目前市面上的分库分表中间件相对较多,其中基于代理方式的有MySQL Proxy和Amoeba, 基于Hibernate框架的是Hibernate Shards,基于jdbc的有当当sharding-jdbc, 基于mybatis的类似maven插件式的有蘑菇街的蘑菇街TSharding, 通过重写spring的ibatis template类的Cobar Client。

还有一些大公司的开源产品:

为什么不建议分库分表

请参看一篇我翻译的stackoverflow上的回答,这个答者功力深厚,铁定的老司机: MySQL分库分表方案

时间: 2024-10-16 03:41:08

数据库分库分表的相关文章

关系型数据库分库分表解决方案

关系型数据库分库分表解决方案 关系型数据库单库或单表在数据达到一定量级后,单个节点的就会出现性能瓶颈.通常的做法就是考虑分库分表. 为什么要分? 分库降低了单点机器的负载:分表,提高了数据操作的效率,尤其是Write操作的效率. 如何分? 按号段分: (1) user_id为区分,1-1000的对应DB1,1001-2000的对应DB2,以此类推:优点:可部分迁移缺点:数据分布不均 (2)hash取模分: 对user_id进行hash(或者如果user_id是数值型的话直接使用user_id 的

数据库分库分表(sharding)系列(一) 拆分实施策略和示例演示

本文原文连接: http://blog.csdn.net/bluishglc/article/details/7696085 ,转载请注明出处!本文着重介绍sharding切分策略,如果你对数据库sharding缺少基本的了解,请参考我另一篇从基础理论全面介绍sharding的文章:数据库Sharding的基本思想和切分策略 第一部分:实施策略 图1.数据库分库分表(sharding)实施策略图解(点击查看大图) 1.准备阶段 对数据库进行分库分表(Sharding化)前,需要开发人员充分了解系

16、MySQL数据库分库分表备份脚本

MySQL数据库分库分表备份脚本 ===================学员分享分库分表========================== 脚本单双引号的区别: 单引号是强引用,强制输出是所见即所得. 双引号是解析变量 和 多个字符串.数字等连接一个字符串 条件1  ||    条件2                      或   假真   真假 条件1 && 条件2                      并   真真    假假 !条件1  && 条件2    

数据库分库分表(sharding)

第一部分:实施策略 图1.数据库分库分表(sharding)实施策略图解(点击查看大图) 1.准备阶段 对数据库进行分库分表(Sharding化)前,需要开发人员充分了解系统业务逻辑和数据库schema.一个好的建议是绘制一张数据库ER图或领域模型图,以这类图为基础划分shard,直观易行,可以确保开发人员始终保持清醒思路.对于是选择数据库ER图还是领域模型图要根据项目自身情况进行选择.如果项目使用数据驱动的开发方式,团队以数据库ER图作为业务交流的基础,则自然会选择数据库ER图,如果项目使用的

转数据库分库分表(sharding)系列(二) 全局主键生成策略

本文将主要介绍一些常见的全局主键生成策略,然后重点介绍flickr使用的一种非常优秀的全局主键生成方案.关于分库分表(sharding)的拆分策略和实施细则,请参考该系列的前一篇文章:数据库分库分表(sharding)系列(一) 拆分实施策略和示例演示 本文原文连接: http://blog.csdn.net/bluishglc/article/details/7710738 ,转载请注明出处! 第一部分:一些常见的主键生成策略 一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键

数据库分库分表(sharding)系列(三) 关于使用框架还是自主开发以及sharding实现层面的考量

当团队对系统业务和数据库进行了细致的梳理,确定了切分方案后,接下来的问题就是如何去实现切分方案了,目前在sharding方面有不少的开源框架和产 品可供参考,同时很多团队也会选择自主开发实现,而不管是选择框架还是自主开发,都会面临一个在哪一层上实现sharding逻辑的问题,本文会对这一系 列的问题逐一进行分析和考量.本文原文连接: http://blog.csdn.net/bluishglc/article/details/7766508转载请注明出处! 一.sharding逻辑的实现层面 从

数据库分库分表(sharding)系列

数据库分库分表(sharding)系列     目录; (一) 拆分实施策略和示例演示 (二) 全局主键生成策略 (三) 关于使用框架还是自主开发以及sharding实现层面的考量 (四) 多数据源的事务处理 (五) 一种支持自由规划无须数据迁移和修改路由代码的Sharding扩容方案 (一) 拆分实施策略和示例演示 第一部分:实施策略 图1.数据库分库分表(sharding)实施策略图解 1.准备阶段 对数据库进行分库分表(Sharding化)前,需要开发人员充分了解系统业务逻辑和数据库sch

数据库分库分表(sharding)系列(二) 全局主键生成策略

本文将主要介绍一些常见的全局主键生成策略,然后重点介绍flickr使用的一种非常优秀的全局主键生成方案.关于分库分表(sharding)的拆分策略和实施细则,请参考该系列的前一篇文章:数据库分库分表(sharding)系列(一) 拆分实施策略和示例演示 本文原文连接: http://blog.csdn.net/bluishglc/article/details/7710738 ,转载请注明出处! 第一部分:一些常见的主键生成策略 一旦数据库被切分到多个物理结点上,我们将不能再依赖数据库自身的主键

数据库分库分表(sharding)系列(一)数据库Sharding的基本思想和切分策略

本文原文连接: http://blog.csdn.net/bluishglc/article/details/7696085 ,转载请注明出处!本文着重介绍sharding切分策略,如果你对数据库sharding缺少基本的了解,请参考我另一篇从基础理论全面介绍sharding的文章:数据库Sharding的基本思想和切分策略 第一部分:实施策略 图1.数据库分库分表(sharding)实施策略图解(点击查看大图) 1.准备阶段 对数据库进行分库分表(Sharding化)前,需要开发人员充分了解系