POJ 2391 Ombrophobic Bovines

Ombrophobic Bovines

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 18623   Accepted: 4057

Description

FJ‘s cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter.

The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction.

Some of the farm‘s fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse.

Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.

Input

* Line 1: Two space-separated integers: F and P

* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i.

* Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.

Output

* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".

Sample Input

3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120

Sample Output

110

Hint

OUTPUT DETAILS:

In 110 time units, two cows from field 1 can get under the shelter in that field, four cows from field 1 can get under the shelter in field 2, and one cow can get to field 3 and join the cows from that field under the shelter in field 3. Although there are other plans that will get all the cows under a shelter, none will do it in fewer than 110 time units.

Source

USACO 2005 March Gold

题意:

f个草坪,每个草坪初始有a[i]头牛,最多可以容纳b[i]头牛,无向图,问最少需要多少时间可以使得每头牛都有归宿...

分析:

最大流的基础题目...但是我貌似脑残了...TAT...

先Floyd处理出每两个点之间的最短路,二分答案,然后建图...

我们第一想法一定是拆点,把每个点拆成一个出点一个入点,S向入点连一条容量为a[i]的边,出点向T连一条容量为b[i]的边,如果两个点之间最短路小于枚举的ans就连边...

但是这肯定是错误的...(随便一个数据就可以卡...)

正确的建图方法是S向出点连边,入点向T连边,出点向入点连边...这样一头牛从A转移到B之后就不可能再转移到其他点了...

zz的我把lr定义成了long long但是忘记改mid...TAT...

代码:

 1 #include<algorithm>
 2 #include<iostream>
 3 #include<cstring>
 4 #include<cstdio>
 5 //by NeighThorn
 6 #define inf 0x3f3f3f3f
 7 #define INF 0x3f3f3f3f3f3f3f3f
 8 using namespace std;
 9
10 const int maxn=200+5,maxm=100000+5;
11
12 int n,m,S,T,cnt,sum,a[maxn],b[maxn],hd[maxn*2],fl[maxm],to[maxm],nxt[maxm],pos[maxn*2];
13 long long dis[maxn][maxn],Max;
14
15 inline void add(int s,int x,int y){
16     fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
17     fl[cnt]=0;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
18 }
19
20 inline bool bfs(void){
21     memset(pos,-1,sizeof(pos));
22     int head=0,tail=0,q[maxn*2];
23     q[0]=S,pos[S]=0;
24     while(head<=tail){
25         int top=q[head++];
26         for(int i=hd[top];i!=-1;i=nxt[i])
27             if(pos[to[i]]==-1&&fl[i])
28                 pos[to[i]]=pos[top]+1,q[++tail]=to[i];
29     }
30     return pos[T]!=-1;
31 }
32
33 inline int find(int v,int f){
34     if(v==T)
35         return f;
36     int res=0,t;
37     for(int i=hd[v];i!=-1&&f>res;i=nxt[i])
38         if(pos[to[i]]==pos[v]+1&&fl[i])
39             t=find(to[i],min(fl[i],f-res)),fl[i]-=t,fl[i^1]+=t,res+=t;
40     if(!res)
41         pos[v]=-1;
42     return res;
43 }
44
45 inline int dinic(void){
46     int res=0,t;
47     while(bfs())
48         while(t=find(S,inf))
49             res+=t;
50     return res;
51 }
52
53 inline int check(long long mid){
54     cnt=0;memset(hd,-1,sizeof(hd));
55     for(int i=1;i<=n;i++)
56         add(a[i],S,i+n),add(b[i],i,T),add(inf,i+n,i);
57     for(int i=1;i<=n;i++)
58         for(int j=1;j<=n;j++)
59             if(dis[i][j]<=mid)
60                 add(inf,i+n,j);
61     return dinic();
62 }
63
64 signed main(void){
65 //    freopen("in.txt","r",stdin);
66     Max=0,sum=cnt=0;
67     scanf("%d%d",&n,&m);
68     S=0,T=n*2+1;
69     for(int i=1;i<=n;i++)
70         for(int j=1;j<=n;j++)
71             dis[i][j]=INF;
72     for(int i=1;i<=n;i++)
73         scanf("%d%d",&a[i],&b[i]),sum+=a[i];
74     for(int i=1,s,x,y;i<=m;i++)
75         scanf("%d%d%d",&x,&y,&s),dis[x][y]=dis[y][x]=min(dis[x][y],(long long)s);
76     for(int k=1;k<=n;k++)
77         for(int i=1;i<=n;i++)
78             for(int j=1;j<=n;j++)
79                 dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
80     long long l=0,r=INF-1,ans=-1;
81     while(l<=r){
82         long long mid=(l+r)>>1;
83         if(check(mid)==sum)
84             ans=mid,r=mid-1;
85         else
86             l=mid+1;
87     }
88     printf("%lld\n",ans);
89     return 0;
90 }//Cap ou pas cap. Cap.



By NeighThorn

时间: 2024-10-20 11:15:40

POJ 2391 Ombrophobic Bovines的相关文章

POJ 2391 Ombrophobic Bovines 不喜欢雨的奶牛 Floyd+二分枚举+最大流

题目链接:POJ 2391 Ombrophobic Bovines Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 15006   Accepted: 3278 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes

poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic

poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 15时39分22秒 * File Name: poj2391.cpp */ #include <ctime> #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring&g

POJ 2391 Ombrophobic Bovines (二分,最短路径,网络流sap,dinic,预留推进 )

Ombrophobic Bovines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14019   Accepted: 3068 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They h

POJ 2391 Ombrophobic Bovines (二分 + floyd + 网络流)

POJ 2391 Ombrophobic Bovines 链接:http://poj.org/problem?id=2391 题目:农场有F 块草地,1≤F≤200,奶牛们在草地上吃草.这些草地之间有P 条路相连,1≤P≤1500,这些路足够宽,再多的奶牛也能同时在路上行走.有些草地上有避雨点,奶牛们可以在此避雨.避雨点的容量是有限的,所以一个避雨点不可能容纳下所有的奶牛.草地与路相比很小,奶牛们通过时不需要花费时间.计算警报至少需要提前多少时间拉响,以保证所有的奶牛都能到达一个避雨点. 思路:

POJ 2391 Ombrophobic Bovines(最大流+拆点)

POJ 2391 Ombrophobic Bovines 题目链接 题意:一些牛棚,有a只牛,现在下雨,每个牛棚容量量变成b,现在有一些道路连接了牛棚,问下雨后牛走到其他牛棚,使得所有牛都有地方躲雨,最后一只牛要走多久 思路:二分答案,然后最大流去判断,建图的方式为,牛棚拆点,源点连向入点,容量为a,出点连向汇点容量为b,中间入点和出点之间根据二分的值判断哪些边是可以加入的 代码: #include <cstdio> #include <cstring> #include <

poj 2391 Ombrophobic Bovines(最大流+floyd+二分)

Ombrophobic Bovines Time Limit: 1000MSMemory Limit: 65536K Total Submissions: 14519Accepted: 3170 Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have de

Poj 2391 Ombrophobic Bovines 网络流 拆点

Poj 2391 Ombrophobic Bovines 网络流 拆点 FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approa

poj 2391 Ombrophobic Bovines 二分+最大流

同poj 2112. 代码: //poj 2391 //sep9 #include <iostream> #include <queue> #include <algorithm> using namespace std; typedef long long ll; const int maxN=1024; const int maxM=100002; const ll MAX=(1ULL<<63)-1; struct Edge { int v,f,nxt;

POJ 2391 Ombrophobic Bovines(二分+拆点+最大流)

http://poj.org/problem?id=2391 题意: 给定一个无向图,点i处有Ai头牛,点i处的牛棚能容纳Bi头牛,求一个最短时间T,使得在T时间内所有的牛都能进到某一牛棚里去. 思路: 建立一个源点和汇点,源点和牛棚的初始牛量相连,汇点和牛棚容量相连.这样跑最大流,如果最后流量等于牛的总数时,就说明是可以的. 那么,怎么连边呢?二分时间,根据时间来连边,所以首先我们先跑一遍floyd计算出两点距离.然后在该时间下,如果d[i][j],那么就添加边(i,i',INF),表面这段路