poj 3134 Power Calculus(迭代加深dfs+强剪枝)

Description

Starting with x and repeatedly multiplying by x, we can compute x31 with thirty multiplications:

x2 = x × x, x3 = x2 × x, x4 = x3 × x, …, x31 = x30 × x.

The operation of squaring can be appreciably shorten the sequence of multiplications. The following is a way to compute x31 with eight multiplications:

x2 = x × x, x3 = x2 × x, x6 = x3 × x3, x7 = x6 × x, x14 = x7 × x7, x15 = x14 × x, x30 = x15 × x15, x31 = x30 × x.

This is not the shortest sequence of multiplications to compute x31. There are many ways with only seven multiplications. The following is one of them:

x2 = x × x, x4 = x2 × x2, x8 = x4 × x4, x8 = x4 × x4, x10 = x8 × x2, x20 = x10 × x10, x30 = x20 × x10, x31 = x30 × x.

If division is also available, we can find a even shorter sequence of operations. It is possible to compute x31 with six operations (five multiplications and one division):

x2 = x × x, x4 = x2 × x2, x8 = x4 × x4, x16 = x8 × x8, x32 = x16 × x16, x31 = x32 ÷ x.

This is one of the most efficient ways to compute x31 if a division is as fast as a multiplication.

Your mission is to write a program to find the least number of operations to compute xn by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence should be x to a positive integer’s power. In others words, x−3, for example, should never appear.

Input

The input is a sequence of one or more lines each containing a single integer n. n is positive and less than or equal to 1000. The end of the input is indicated by a zero.

Output

Your program should print the least total number of multiplications and divisions required to compute xn starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces.

Sample Input

1
31
70
91
473
512
811
953
0

Sample Output

0
6
8
9
11
9
13
12

Source

Japan 2006

求只用乘法和除法最快多少步可以求到x^n

其实答案最大13,但由于树的分支极为庞大在IDDFS的同时,我们还要加2个剪枝

1 如果当前序列最大值m*2^(dep-k)<n则减去这个分支

2 如果出现两个大于n的数则要减去分支。因为里面只有一个有用,我们一定可以通过另外更加短的路径得到答案

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 using namespace std;
 5 int num;
 6 int way[1006];
 7 bool dfs(int n,int step){
 8     if(num>step) return false;
 9     if(way[num]==n) return true;
10     if(way[num]<<(step-num)<n) return false;//强剪枝
11     for(int i=0;i<=num;i++){
12         num++;
13         way[num]=way[num-1]+way[i];
14         if(way[num]<=1000 && dfs(n,step)) return true;
15
16         way[num]=way[num-1]-way[i];
17         if(way[num]>0 && dfs(n,step)) return true;
18         num--;
19     }
20     return false;
21 }
22 int main()
23 {
24     int n;
25     while(scanf("%d",&n)==1){
26         if(n==0){
27             break;
28         }
29
30         //迭代加深dfs
31         int i;
32         for(i=0;;i++){
33             way[num=0]=1;
34             if(dfs(n,i))
35                 break;
36         }
37         printf("%d\n",i);
38
39     }
40     return 0;
41 }

时间: 2024-12-26 18:13:51

poj 3134 Power Calculus(迭代加深dfs+强剪枝)的相关文章

POJ 3134 Power Calculus (迭代剪枝搜索)

题目大意:略 题目里所有的运算都是幂运算,所以转化成指数的加减 由于搜索层数不会超过$2*log$层,所以用一个栈存储哪些数已经被组合出来了,不必暴力枚举哪些数已经被搜出来了 然后跑$iddfs$就行了 可以加一个剪枝,设你选择的最大迭代深度为K,现在如果当前组合出的数$x$,满足$x*2^{K-dep}<n$,说明$n$一定无法被$x$组合出来(即自己不断加自己),$x$对于答案是一定无意义的,就跳出 1 #include <queue> 2 #include <cstdio&g

POJ-3134-Power Calculus(迭代加深DFS)

Description Starting with x and repeatedly multiplying by x, we can compute x31 with thirty multiplications: x2 = x × x, x3 = x2 × x, x4 = x3 × x, -, x31 = x30 × x. The operation of squaring can be appreciably shorten the sequence of multiplications.

poj 3134 Power Calculus iddfs(迭代深搜)

iddfs入门题. //poj 3134 //sep9 #include <iostream> using namespace std; int n,deep; int a[30]; bool iddfs(int pos) { int t; if(pos>deep) return false; if(a[pos]<<(deep-pos)<n) return false; if(a[pos]==n) return true; for(int i=1;i<=pos;+

POJ 3134 - Power Calculus

迭代加深 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> #include<algorithm> #include<cmath> #include<cstring> #include<queue> #include<vector> using namespace std; int n,num[1000],lim; int dfs(in

POJ 3134 - Power Calculus (IDDFS)

题意:求只用乘法和除法最快多少步可以求到x^n 思路:迭代加深搜索 //Accepted 164K 1094MS C++ 840B include<cstdio> #include<iostream> #include<algorithm> #include<cstring> using namespace std; int step[100005]; int n; int cur; bool IDDFS(int lim,int g) { if(cur>

构造数列 迭代加深dfs

[题目描述] 请构造一个尽量短的序列 A,长度为 len,一开始会给你一个正整数 n, 满足以下条件: A[1]=1 A[len]=n A[i]>A[i-1]                       (len>=i>=2) A[x]=A[i]+A[j]           (1<=i,j<x) [输入文件] 此题有多组数据,每行一个正整数n, 输入以 0 结尾 [输出文件] 每行 len 个正整数,为A 序列 [输入样例1]                        

[迭代加深dfs] zoj 3768 Continuous Login

题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3768 Continuous Login Time Limit: 2 Seconds      Memory Limit: 131072 KB      Special Judge Pierre is recently obsessed with an online game. To encourage users to log in, this game wi

uva529 迭代加深+必要剪枝

// // main.cpp // 529 // // Created by Fangpin on 15/3/14. // Copyright (c) 2015年 FangPin. All rights reserved. // #include <iostream> #include <cstring> using namespace std; int a[10005]={1,2},n; bool ok; void dfs(int limit,int d){ if(d==limi

【POJ】3134 Power Calculus

1. 题目描述给定一个正整数$n$,求经过多少次乘法或除法运算可以从$x$得到$x^n$?中间结果也是可以复用的. 2. 基本思路实际结果其实非常小,肯定不会超过20.因此,可以采用IDA*算法.注意几个剪枝优化就好了:(1)每次新计算的值必须从未出现过;(2)每次新计算的值进行还可以执行的运算次数的幂运算仍然小于$x^n$,即新值左移还可以执行的次数小于$n$则一定不成立:(3)该值与$n$的绝对值$\Delta$小于$n$,同时还可以执行的次数大于$ans[\Delta]+1$,那么一定成立