欧拉计划·第十一题

题目11:在20×20的网格中同一直线上四个数的最大乘积是多少?

在以下这个20*20的网格中,四个处于同一对角线上的相邻数字用红色标了出来:

08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08

49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00

81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65

52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91

22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80

24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50

32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70

67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21

24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72

21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95

78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92

16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57

86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58

19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40

04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66

88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69

04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36

20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16

20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54

01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48

这四个数字的乘积是:26 * 63 * 78 * 14 = 1788696.

在这个20*20网格中,处于任何方向上(上,下,左,右或者对角线)的四个相邻数字的乘积的最大值是多少?

源码

STDMETHODIMP COuLa::Test11(void)
{
	// TODO: 在此添加实现代码
	int iMaxNumber = 0;
	int n1,n2,n3,n4;
	int cc[400] = {8,2,22,97,38,15,0,40,0,75,4,5,7,78,52,12,50,77,91,8,
				49,49,99,40,17,81,18,57,60,87,17,40,98,43,69,48,4,56,62,00,
				81,49,31,73,55,79,14,29,93,71,40,67,53,88,30,3,49,13,36,65,
				52,70,95,23,4,60,11,42,69,24,68,56,1,32,56,71,37,2,36,91,
				22,31,16,71,51,67,63,89,41,92,36,54,22,40,40,28,66,33,13,80,
				24,47,32,60,99,3,45,2,44,75,33,53,78,36,84,20,35,17,12,50,
				32,98,81,28,64,23,67,10,26,38,40,67,59,54,70,66,18,38,64,70,
				67,26,20,68,2,62,12,20,95,63,94,39,63,8,40,91,66,49,94,21,
				24,55,58,5,66,73,99,26,97,17,78,78,96,83,14,88,34,89,63,72,
				21,36,23,9,75,00,76,44,20,45,35,14,00,61,33,97,34,31,33,95,
				78,17,53,28,22,75,31,67,15,94,3,80,4,62,16,14,9,53,56,92,
				16,39,5,42,96,35,31,47,55,58,88,24,00,17,54,24,36,29,85,57,
				86,56,00,48,35,71,89,7,5,44,44,37,44,60,21,58,51,54,17,58,
				19,80,81,68,5,94,47,69,28,73,92,13,86,52,17,77,4,89,55,40,
				4,52,8,83,97,35,99,16,7,97,57,32,16,26,26,79,33,27,98,66,
				88,36,68,87,57,62,20,72,3,46,33,67,46,55,12,32,63,93,53,69,
				4,42,16,73,38,25,39,11,24,94,72,18,8,46,29,32,40,62,76,36,
				20,69,36,41,72,30,23,88,34,62,99,69,82,67,59,85,74,4,36,16,
				20,73,35,29,78,31,90,1,74,31,49,71,48,86,81,16,23,57,5,54,
				1,70,54,71,83,51,54,69,16,92,33,48,61,43,52,1,89,19,67,48};
	for(int i = 0; i<20; i++)
	{
		for(int j = 0; j<16; j++)
		{
			int a = cc[i*20+j]*cc[i*20+j+1]*cc[i*20+j+2]*cc[i*20+j+2];
			if(a > iMaxNumber)
			{
				iMaxNumber = a;
				n1 = cc[i*20+j];
				n2 = cc[i*20+j+1];
				n3 = cc[i*20+j+2];
				n4 = cc[i*20+j+2];
			}
		}
	}

	for(int i = 0; i<20; i++)
	{
		for(int j = 0; j<16; j++)
		{
			int a = cc[j*20+i]*cc[(j+1)*20+i]*cc[(j+2)*20+i]*cc[(j+3)*20+i];
			if(a > iMaxNumber)
			{
				iMaxNumber = a;
				n1 = cc[j*20+i];
				n2 = cc[(j+1)*20+i];
				n3 = cc[(j+2)*20+i];
				n4 = cc[(j+3)*20+i];
			}
		}
	}

	for(int i =3; i<20; i++)
	{
		int j = i;
		int a = 1;

		for(int x = 0; x<=i-3; x++)
		{
			a = cc[i - x + 20*x]*cc[i - x -1 + 20*(x+1)]*cc[i - x -2 + 20*(x+2)]*cc[i - x -3 + 20*(x+3)];
			if(a > iMaxNumber)
			{
				iMaxNumber = a;
				n1 = cc[i - x + 20*x];
				n2 = cc[i - x -1 + 20*(x+1)];
				n3 = cc[i - x -2 + 20*(x+2)];
				n4 = cc[i - x -3 + 20*(x+3)];
			}
		}

	}

	for(int i =16; i>=0; i--)
	{
		int a = 1;

		for(int x = 0; x<=16-i; x++)
		{
			a = cc[i + x + 20*x]*cc[i + x + 1 + 20*(x+1)]*cc[i + x + 2 + 20*(x+2)]*cc[i + x + 3 + 20*(x+3)];
			if(a > iMaxNumber)
			{
				iMaxNumber = a;
				n1 = cc[i + x + 20*x];
				n2 = cc[i + x + 1 + 20*(x+1)];
				n3 = cc[i + x + 2 + 20*(x+2)];
				n4 = cc[i + x + 3 + 20*(x+3)];
			}
		}

	}

	printf("The Test 11 Number is %d. a = %d, b = %d, c = %d , d = %d.\n",iMaxNumber,n1,n2,n3,n4);
	return S_OK;
}

函数调用

IOula->Test11();

输出

The Test 11 Number is 70600674. a = 89, b = 94, c = 97, d = 87.
时间: 2024-12-16 02:32:54

欧拉计划·第十一题的相关文章

欧拉计划&#183;第十题

题目10:计算两百万以下所有质数的和. 10以下的质数的和是2 + 3 + 5 + 7 = 17. 找出两百万以下所有质数的和. 源码 STDMETHODIMP COuLa::Test10(int number) { // TODO: 在此添加实现代码 __int64 sum = 2; for(int i = 2; 2*i-1 <= number; i++) { int c = 2*i-1; for( int j = 2;c>10? j<=10 : j<=c;j++) { if(1

欧拉计划&#183;第七题

题目7:找出第10001个质数. 前六个质数是2,3,5,7,11和13,其中第6个是13. 第10001个质数是多少? 源码 STDMETHODIMP COuLa::Test7(int number) { // TODO: 在此添加实现代码 int iNumberForCout = 1; int iNumberForOutput = 0; int iNumberForAdd = 1; while(iNumberForCout<number) { iNumberForAdd++; iNumber

欧拉计划&#183;第八题

题目8:找出这个1000位数字中连续13个数字乘积的最大值. 找出以下这个1000位的整数中连续13个数字的最大乘积. 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 85861560789112949495459501737958331952853208805511 1254069874715852386305071569329096329

欧拉计划&#183;第五题

题目5:找出最小的能被1-20中每个数整除的数. 2520是最小的能被1-10中每个数字整除的正整数. 最小的能被1-20中每个数整除的正整数是多少? 源码 STDMETHODIMP COuLa::Test5(int number) { // TODO: 在此添加实现代码 int iForNumber[MAX_PATH] = {0}; int iForFinalNumber[MAX_PATH] = {0}; for(int i = number; i>0; i--) { int c = i; i

欧拉计划&#183;第六题

题目6:平方和与和平方的差是多少? 前十个自然数的平方和是: 12 + 22 + ... + 102 = 385 前十个自然数的和的平方是: (1 + 2 + ... + 10)2 = 552 = 3025 所以平方和与和的平方的差是3025  385 = 2640. 找出前一百个自然数的平方和与和平方的差. 源码 STDMETHODIMP COuLa::Test6(int number) { // TODO: 在此添加实现代码 __int64 iSquareSumNumber = 0; __i

欧拉计划&#183;第四题

题目4:找出由两个三位数乘积构成的回文. 一个回文数指的是从左向右和从右向左读都一样的数字.最大的由两个两位数乘积构成的回文数是9009 = 91 * 99. 找出最大的有由个三位数乘积构成的回文数. 源代码 STDMETHODIMP COuLa::Test4(int iMaxNumber) { // TODO: 在此添加实现代码 int outputNumber = 0; int iMaxOutputNumber = 0; for(int i = iMaxNumber/10; i<iMaxNu

欧拉计划第3题题解

Largest prime factor The prime factors of 13195 are 5, 7, 13 and 29. What is the largest prime factor of the number 600851475143 ? 最大质因数 13195的所有质因数为5.7.13和29. 600851475143最大的质因数是多少? 解题思路 分解质因数的算法是 \(O( \sqrt{n} )\) 的算法. 求一个数 \(a\) 的质因数,可以从 \(2\) 开始到

欧拉计划第10题题解

Summation of primes The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million. 素数的和 所有小于10的素数的和是2 + 3 + 5 + 7 = 17. 求所有小于两百万的素数的和. 解题思路 没有特别好的想法,下奶能想到的就是枚举算出200万以内的所有素数,然后求这些素数的和. 实现代码如下: #include <bits/st

欧拉计划第8题题解

Largest product in a series The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832. 73167176531330624919225119674426574742355349194934 96983520312774506326239578318016984801869478851843 8586156078911