【NOI2015】寿司晚宴

题目链接:http://uoj.ac/problem/129

描述

为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。

在晚宴上,主办方为大家提供了 n?1n?1 种不同的寿司,编号 1,2,3,…,n?11,2,3,…,n?1 ,其中第 ii 种寿司的美味度为 i+1i+1 (即寿司的美味度为从 22 到 nn )。

现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 xx 的寿司,小 W 品尝的寿司中存在一种美味度为 yy 的寿司,而 xx 与 yy 不互质。

现在小 G 和小 W 希望统计一共有多少种和谐的品尝寿司的方案(对给定的正整数 pp 取模)。注意一个人可以不吃任何寿司。

输入格式

输入文件的第 11 行包含 22 个正整数 n,pn,p ,中间用单个空格隔开,表示共有 nn 种寿司,最终和谐的方案数要对 pp 取模。

输出格式

输出一行包含 11 个整数,表示所求的方案模 pp 的结果。

样例一

input

3 10000

output

9

样例二

input

4 10000

output

21

样例三

input

100 100000000

output

3107203

限制与约定

测试点编号 n 的规模 约定
1 2≤n≤30 0<p≤1000000000
2
3
4 2≤n≤100
5
6 2≤n≤200
7
8 2≤n≤500
9
10

时间限制:1s

空间限制:512MB

题解

状压DP

很容易就想到只要两个集合中没有相同的质因数就满足条件了

注意,每个数中>sqrt(500)的数最多只有一个!!

于是,我们可以枚举出<sqrt(500)的质数,共八个

列DP:f[i][j][k]表示选到第i个数,A的状态为j,B的状态为k的方案数

然后呢?

我们对i分解质因数,并记录最大的质数以及它的状态

如:138=2*3*23,所以它的最大的质数为23,状态为3(二进制为11000000)

于是,f[i][j][k]+=f[i-1][j][k],f[i][j|s[i]][k]+=f[i-1][j][k],f[i][j][k|s[i]]+=f[i-1][j][k],

大质数的情况特判一下就好了

代码

#include <cstdio>
#include <algorithm>
using namespace std;
int i,j,k,n,m,x,y,t,mod,prime[9],f[510][1<<8][1<<8][3];
struct data{int bi,su;}p[501];
inline bool cmp(const data&a,const data&b){return a.bi<b.bi;}
int add(int &x,int y){x+=y;if (x>=mod)x-=mod;}
int main(){
    scanf("%d%d",&n,&mod);
    prime[1]=2;prime[2]=3;prime[3]=5;prime[4]=7;prime[5]=11;prime[6]=13;prime[7]=17;prime[8]=19;
    for (i=2;i<=n;i++){
        int te=i;
        for (j=1;j<=8;j++)
            if (te%prime[j]==0){
                p[i].su|=1<<j-1;
                while (te%prime[j]==0)te/=prime[j];
            }
        p[i].bi=te;
    }
    sort(p+2,p+1+n,cmp);f[1][0][0][0]=1;
    for (i=2;i<=n;i++)
        for (j=0;j<(1<<8);j++)
            for (k=0;k<(1<<8);k++){
                if ((j&k)==0){
                    if (i==2||p[i].bi==1||p[i].bi!=p[i-1].bi){
                        int te=0;
                        add(te,f[i-1][j][k][0]);add(te,f[i-1][j][k][1]);add(te,f[i-1][j][k][2]);
                        add(f[i][j][k][0],te);add(f[i][j|p[i].su][k][1],te);add(f[i][j][k|p[i].su][2],te);
                    }
                    else{
                        if (f[i-1][j][k][0]){add(f[i][j][k][0],f[i-1][j][k][0]);add(f[i][j|p[i].su][k][1],f[i-1][j][k][0]);add(f[i][j][k|p[i].su][2],f[i-1][j][k][0]);}
                        if (f[i-1][j][k][1]){add(f[i][j][k][1],f[i-1][j][k][1]);add(f[i][j|p[i].su][k][1],f[i-1][j][k][1]);}
                        if (f[i-1][j][k][2]){add(f[i][j][k][2],f[i-1][j][k][2]);add(f[i][j][k|p[i].su][2],f[i-1][j][k][2]);}
                    }
                }
            }
    int ans=0;for (i=0;i<(1<<8);i++)for (j=0;j<(1<<8);j++)if ((i&j)==0)for (k=0;k<=2;k++)add(ans,f[n][i][j][k]);
    printf("%d\n",ans);
    return 0;
}
时间: 2024-09-30 14:57:57

【NOI2015】寿司晚宴的相关文章

【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n). 现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x

BZOJ 4197: [Noi2015]寿司晚宴( dp )

N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个人即可. 时间复杂度O(N*2^16) ----------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm&

状压DP --- [NOI2015]寿司晚宴

[NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n?1种不同的寿司,编号1,2,3,?,n-1,其中第种寿司的美味度为i+1(即寿司的美味度为从2到n). 现在小G和小W希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当: 小G品尝的寿司种类中存在一种美味度为x的寿司,小W品尝的寿司中存在一种美味度为y的寿司,而x与y不互质. 现在小G和小W希

[NOI2015]寿司晚宴

题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴.小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n?1种不同的寿司,编号1,2,3,?,n-1,其中第种寿司的美味度为i+1(即寿司的美味度为从2到n). 现在小G和小W希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小G品尝的寿司种类中存在一种美味度为x的寿司,小W品尝的寿司中存在一种美味度为y的寿司,而x与y不互质. 现在小G和小W希望统计一共有多少种和谐的品尝寿司

bzoj4197 [Noi2015]寿司晚宴

Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n?1 种不同的寿司,编号 1,2,3,-,n?1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n). 现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y

[UOJ#129][BZOJ4197][Noi2015]寿司晚宴

试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n?1 种不同的寿司,编号 1,2,3,-,n?1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n). 现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而

[BZOJ]4197: [Noi2015]寿司晚宴

Time Limit: 10 Sec  Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n?1 种不同的寿司,编号 1,2,3,-,n?1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n). 现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝

【题解】NOI2015寿司晚宴

想好久啊+不敢写啊--但果然人还是应当勇敢自信,只有坚定地去尝试,才会知道最后的结果.1A真的太开心啦,不过好像我的做法还是比较复杂的样子--理解起来应该算是比较容易好懂的类型,大家可以参考一下思路~ 首先我们先考虑一下简单的30分算法:30以内的质数只有十个左右,可以利用状压表示出两个人所选择的集合,再通过寿司转移即可.之后的大数据呢?我们发现不能这样做是因为之后的质数越来越多,状压的空间就开不下了. 这时要注意到一个性质:对于1~n内的每一个数而言,都可以分解成若干个<sqrt(n)的质数之

【bzoj4197】[Noi2015]寿司晚宴 dp

因为每个数只有一个大于根号n的质因子,所以我们把每个数拆成一个大于根号n的质因子乘以一个数的形式,对于大于根号n的质因子相同的数,我们放到一起处理 dp[0/1][i][x][y]表示A/B选了当前的大质数,现在枚举到具有当前大质数的第i个数,之前A选中的集合为x,B选中的集合为y的方案数 dp[0/1][0][x][y]=f[i-1][x][y] dp[0][i][x][y]=dp[0][i-1][x][y]+dp[0][i-1][x-S][y] dp[1][i][x][y]=dp[1][i-

bzoj 4197: [Noi2015]寿司晚宴【状压dp】

一个数内可能多个的质因数只有小于根号n的,500内这样的数只有8个,所以考虑状压 把2~n的数处理出小于根号500的质因数集压成s,以及大质数p(没有就是1),然后按p排序 根据题目要求,拥有一个质因数的只能给一个人,所以排序后能给一个人的大质数就是一个区间 然后设f[s1][s2]为一人选s1,另一人选s2的方案数,注意这里的s只压了小于根号500的八个质数 设g[0/1][s1][s2]为一人选s1,另一人选s2的,当前枚举的大质数给小G/小W的方案数 正常转移即可 然后注意把g转到f上时应