Gradient-Based Learning Applied to Document Recognition 部分阅读

卷积网络

       卷积网络用三种结构来确保移位、尺度和旋转不变:局部感知野、权值共享和时间或空间降采样。典型的leNet-5如下图所示:

C1中每个特征图的每个单元和输入的25个点相连,这个5*5的区域被称为感知野。特征图的每个单元共享25个权值和一个偏置。其他特征图使用不同的权值(卷积枋),因

此可以得到不同类型的局部特征。卷积层的一个重要思想是,如果图像产生了位移,特征图输出将会产生相同数量的位移。这也是卷积网络位移和形变不变的原理。

特征图检测完毕后,它们的确切位置就不那么重要了,重要的是特征之间的相对位置。特征位置太准确不仅无利于模式识别,还会有害处,因为对不同的字符来说它们的位置是

不同的(所以特征之间的相对位置才是最重要的)。降低位置准确性可以通过下采样来降低分辨率来实现,同是也降低了输出对位移和形变的敏感性。每个单元计算四个输入的平均值(就是采样层),

将下采样的值乘一个训练系数加一个偏置(下采样层连接到sigmod的系数同要需要训练),然后将结果传给激活函数。训练系数和偏置控制了sigmod函数的非线性。如果这个系数很小的话,则每个单元类似于线性模型,下采样层所起的功能仅仅就是模糊输入;如果系数很大,则下采样操作可视为noisy OR或者 noisy AND(取决于偏置的大小)(存疑?)。

leNet-5

leNet-5有七层(不含输入),其中C1有156((5*5+1)*6)个可训练参数,122304(28*28*156)个连接。C2层的一个单元为C1中的2*2所得,输入到激活函数时它们共用一个

系数加一个偏置,所需的训练参数为(1+1)*6=12个,连接参数为(4+1)*6*14*14=5880个(我的理解是只在leNet-5中2*2的感知野值相同)。

C3层有16个特征图,由表格可以看出,每个特征图对S2中的特征图并非是全连接的。共有(25*3+1)*6+(25*4)*9+(25*6+1)=1516个训练参数,连接个数为

1516*10*10=151600个。S4同样为下采样层,有16*(1+1)=32个训练参数,有(2*2+1)*25*16=2000个连接。

     C5有120个特征图,同样用5*5的卷积核,与S4层全连接,所以C5的特征是1*1的。之所以C5为卷积层而不是全连接层,是因为当le-Net5的输入增大时,特征图的维度也会大于

1*1。

F6全连接层,有84个单元,与C5全连接,共有(120+1)*84=10164个训练参数。同经经典的神经网络一样,F6乘权重加偏置然后送入到激活函数中。

下面是输出层(好吧,看的不是很明白),参考:http://blog.csdn.net/zouxy09/article/details/8781543

时间: 2024-10-10 04:29:32

Gradient-Based Learning Applied to Document Recognition 部分阅读的相关文章

Gradient-based learning applied to document recognition(转载)

Deep learning:三十八(Stacked CNN简单介绍) 前言: 本节主要是来简单介绍下stacked CNN(深度卷积网络),起源于本人在构建SAE网络时的一点困惑:见Deep learning:三十六(关于构建深度卷积SAE网络的一点困惑).因为有时候针对大图片进行recognition时,需要用到无监督学习的方法去pre-training(预训练)stacked CNN的每层网络,然后用BP算法对整个网络进行fine-tuning(微调),并且上一层的输出作为下一层的输入.这几

2016.4.16 Gradient-based learning applied to document recognition[待更]

Gradient-Based Learning Applied to Document 今天搜索了一下这篇98年的经典文章,主要内容为LeNet-5这个成熟的使用cnn的商业支票的编码的识别系统.不过最主要的是看看GD.看了一下,居然有46页,也是给跪了,好长好长好长.也许是我太年轻,没看过更长的,不过我一般见到的都是十页左右的,这也算是磨砺一下自己.不过相关的博客评论比较少,得自己认真读一读.毕竟是个划时代的大一统的文章. Abstract 使用反向传播去训练神经网络是梯度下降很好的一个应用,

Gradient-Based Learning Applied to Document Recognition

本文主要以LeNet-5手写体字符识别卷积神经网络为例,详细介绍了卷积神经网络. 这是一篇98年发表的论文,用标准的全连接的多层神经网络能够作为分类器.但是存在以下问题:一.输入的标准图像太大,因此有太多的权系数需要训练,这要很大的计算能力并且需要非常大的训练集.存储器需要存储太多的权系数,这样会排除一些硬件应用(注意这是一篇98年的文章..).最主要的问题是,无结构化的图像和语言应用,它们内部没有构建关于转换和输入局部扭曲的不变性.为了学习由于输入归一化照成的多种不同单个字符的倾斜.位置变化等

【论文笔记】Deep Structured Output Learning for Unconstrained Text Recognition

写在前面:        我看的paper大多为Computer Vision.Deep Learning相关的paper,现在基本也处于入门阶段,一些理解可能不太正确.说到底,小女子才疏学浅,如果有错误及理解不透彻的地方,欢迎各位大神批评指正!E-mail:[email protected] 论文结构: Abstract 1.Introduction 2.Related Work 3.CNN Text Recognition Model 3.1 Character Sequence Model

Brief History of Machine Learning

Brief History of Machine Learning My subjective ML timeline Since the initial standpoint of science, technology and AI, scientists following Blaise Pascal and Von Leibniz ponder about a machine that is intellectually capable as much as humans. Famous

Deep Learning方向的paper

转载 http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类.目前只整理了部分,剩余部分还会持续更新. 一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical

My deep learning reading list

My deep learning reading list 主要是顺着Bengio的PAMI review的文章找出来的.包括几本综述文章,将近100篇论文,各位山头们的Presentation.全部都可以在google上找到.BTW:由于我对视觉尤其是检测识别比较感兴趣,所以关于DL的应用主要都是跟Vision相关的.在其他方面比如语音或者NLP,很少或者几乎没有.个人非常看好CNN和Sparse Autoencoder,这个list也反映了我的偏好,仅供参考. Review Book Lis

个人阅读的Deep Learning方向的paper整理

http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但有些部分是有交叉或者内容重叠,也不必纠结于这属于DNN还是CNN之类,个人只是大致分了个类.目前只整理了部分,剩余部分还会持续更新. 一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 2 Statistical La

[Source] Paper references on Deep Learning

Deep Learning References ________________________________________________________________ Review Book List:[2009 Thesis] Learning Deep Generative Models.pdf[2009] Learning Deep Architectures for AI.pdf[2013 DengLi Review] Deep Learning for Signal and