转载-最大似然估计学习总结

下面是转载http://blog.csdn.net/yanqingan/article/details/6125812博客的内容

最大似然估计学习总结

 

1. 作用

在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计。

2. 离散型

为离散型随机变量,为多维参数向量,如果随机变量相互独立且概率计算式为P{,则可得概率函数为P{}=,在固定时,上式表示的概率;当已知的时候,它又变成的函数,可以把它记为,称此函数为似然函数。似然函数值的大小意味着该样本值出现的可能性的大小,既然已经得到了样本值,那么它出现的可能性应该是较大的,即似然函数的值也应该是比较大的,因而最大似然估计就是选择使达到最大值的那个作为真实的估计。

3. 连续型

为连续型随机变量,其概率密度函数为为从该总体中抽出的样本,同样的如果相互独立且同分布,于是样本的联合概率密度为。大致过程同离散型一样。

4. 关于概率密度(PDF)

我们来考虑个简单的情况(m=k=1),即是参数和样本都为1的情况。假设进行一个实验,实验次数定为10次,每次实验成功率为0.2,那么不成功的概率为0.8,用y来表示成功的次数。由于前后的实验是相互独立的,所以可以计算得到成功的次数的概率密度为:

= 其中y

由于y的取值范围已定,而且也为已知,所以图1显示了y取不同值时的概率分布情况,而图2显示了当时的y值概率情况。

图1 时概率分布图

图2 时概率分布图

那么在[0,1]之间变化而形成的概率密度函数的集合就形成了一个模型。

5. 最大似然估计的求法

由上面的介绍可以知道,对于图1这种情况y=2是最有可能发生的事件。但是在现实中我们还会面临另外一种情况:我们已经知道了一系列的观察值和一个感兴趣的模型,现在需要找出是哪个PDF(具体来说参数为多少时)产生出来的这些观察值。要解决这个问题,就需要用到参数估计的方法,在最大似然估计法中,我们对调PDF中数据向量和参数向量的角色,于是可以得到似然函数的定义为:

该函数可以理解为,在给定了样本值的情况下,关于参数向量取值情况的函数。还是以上面的简单实验情况为例,若此时给定y为7,那么可以得到关于的似然函数为:

继续回顾前面所讲,图1,2是在给定的情况下,样本向量y取值概率的分布情况;而图3是图1,2横纵坐标轴相交换而成,它所描述的似然函数图则指出在给定样本向量y的情况下,符合该取值样本分布的各种参数向量的可能性。若相比于,使得y=7出现的可能性要高,那么理所当然的要比更加接近于真正的估计参数。所以求的极大似然估计就归结为求似然函数的最大值点。那么取何值时似然函数最大,这就需要用到高等数学中求导的概念,如果是多维参数向量那么就是求偏导。

图3 的似然函数分布图

主要注意的是多数情况下,直接对变量进行求导反而会使得计算式子更加的复杂,此时可以借用对数函数。由于对数函数是单调增函数,所以具有相同的最大值点,而在许多情况下,求的最大值点比较简单。于是,我们将求的最大值点改为求的最大值点。

若该似然函数的导数存在,那么对关于参数向量的各个参数求导数(当前情况向量维数为1),并命其等于零,得到方程组:

可以求得时似然函数有极值,为了进一步判断该点位最大值而不是最小值,可以继续求二阶导来判断函数的凹凸性,如果的二阶导为负数那么即是最大值,这里再不细说。

还要指出,若函数关于的导数不存在,我们就无法得到似然方程组,这时就必须用其它的方法来求最大似然估计值,例如用有界函数的增减性去求的最大值点

6. 总结

最大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一。说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值。最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值。

求最大似然函数估计值的一般步骤:
(1) 写出似然函数
(2) 对似然函数取对数,并整理
(3) 求导数
(4) 解似然方程

对于最大似然估计方法的应用,需要结合特定的环境,因为它需要你提供样本的已知模型进而来估算参数,例如在模式识别中,我们可以规定目标符合高斯模型。而且对于该算法,我理解为,“知道”和“能用”就行,没必要在程序设计时将该部分实现,因为在大多数程序中只会用到我最后推导出来的结果。个人建议,如有问题望有经验者指出。在文献[1]中讲解了本文的相关理论内容,在文献[2]附有3个推导例子。

7. 参考文献

[1]I.J. Myung. Tutorial on maximum likelihood estimation[J]. Journal of Mathematical Psychology, 2003, 90-100.

[2] http://edu6.teacher.com.cn/ttg006a/chap7/jiangjie/72.htm

该文通过Windows Live Writer上传,如有版面问题影响视觉效果请见谅,可以通过点击看清晰图!^0^

时间: 2024-08-29 20:27:55

转载-最大似然估计学习总结的相关文章

最大似然估计总结

from http://blog.csdn.net/yanqingan/article/details/6125812 最大似然估计学习总结------MadTurtle   1. 作用 在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计. 2. 离散型 设为离散型随机变量,为多维参数向量,如果随机变量相互独立且概率计算式为P{,则可得概率函数为P{}=,在固定时,上式表示的概率:当已知的时候,它又变成的函数,可以把它记为,称此函数为似然

最大似然估计的复习(转)

转自:http://blog.csdn.net/yanqingan/article/details/6125812 最大似然估计学习总结------MadTurtle   1. 作用 在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数作为真实的参数估计. 2. 离散型 设为离散型随机变量,为多维参数向量,如果随机变量相互独立且概率计算式为P{,则可得概率函数为P{}=,在固定时,上式表示的概率:当已知的时候,它又变成的函数,可以把它记为,称此函数为似然函数

深度学习中交叉熵和KL散度和最大似然估计之间的关系

机器学习的面试题中经常会被问到交叉熵(cross entropy)和最大似然估计(MLE)或者KL散度有什么关系,查了一些资料发现优化这3个东西其实是等价的. 熵和交叉熵 提到交叉熵就需要了解下信息论中熵的定义.信息论认为: 确定的事件没有信息,随机事件包含最多的信息. 事件信息的定义为:\(I(x)=-log(P(x))\):而熵就是描述信息量:\(H(x)=E_{x\sim P}[I(x)]\),也就是\(H(x)=E_{x\sim P}[-log(P(x))]=-\Sigma_xP(x)l

【机器学习算法-python实现】最大似然估计(Maximum Likelihood)

1.背景 最大似然估计是概率论中常常涉及到的一种统计方法.大体的思想是,在知道概率密度f的前提下,我们进行一次采样,就可以根据f来计算这个采样实现的可能性.当然最大似然可以有很多变化,这里实现一种简单的,实际项目需要的时候可以再更改. 博主是参照wiki来学习的,地址请点击我 这里实现的是特别简单的例子如下(摘自wiki的最大似然) 离散分布,离散有限参数空间[编辑] 考虑一个抛硬币的例子.假设这个硬币正面跟反面轻重不同.我们把这个硬币抛80次(即,我们获取一个采样并把正面的次数记下来,正面记为

最大似然估计 (Maximum Likelihood Estimation), 交叉熵 (Cross Entropy) 与深度神经网络

最近在看深度学习的"花书" (也就是Ian Goodfellow那本了),第五章机器学习基础部分的解释很精华,对比PRML少了很多复杂的推理,比较适合闲暇的时候翻开看看.今天准备写一写很多童鞋们w未必完全理解的最大似然估计的部分. 单纯从原理上来说,最大似然估计并不是一个非常难以理解的东西.最大似然估计不过就是评估模型好坏的方式,它是很多种不同评估方式中的一种.未来准备写一写最大似然估计与它的好朋友们,比如说贝叶斯估计 (Beyasian Estimation), 最大后验估计(Max

最大似然估计 (MLE) 最大后验概率(MAP)

1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和方差:或者是二项分布,但是不知道均值. 最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数.MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大: 其中就是似然函数,表示在参数下出现观测数据的概率.我们假设每个观测数据是独立的,那么有 为了

【转载】增强学习(Reinforcement Learning and Control)

增强学习(Reinforcement Learning and Control)  [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行拟合.分类.聚类或者降维等操作.然而对于很多序列决策或者控制问题,很难有这么规则的样本.比如,四足机器人的控制问题,刚开始都不知道应该让其动那条腿,在移动过程中,也不知道怎么让机器人自动找到合适的前进方向. 另外如要设计一个下象棋的AI,每走一步实际上也是一个决策过程,虽然对于简单的棋有A*的启发式

模式识别:最大似然估计与贝叶斯估计方法

之前学习了贝叶斯分类器的构造和使用,其中核心的部分是得到事件的先验概率并计算出后验概率 ,而事实上在实际使用中,很多时候无法得到这些完整的信息,因此我们需要使用另外一个重要的工具--参数估计. 参数估计是在已知系统模型结构时,用系统的输入和输出数据计算系统模型参数的过程.18世纪末德国数学家C.F.高斯首先提出参数估计的方法,他用最小二乘法计算天体运行的轨道.20世纪60年代,随着电子计算机的普及,参数估计有了飞速的发展.参数估计有多种方法,有最小二乘法.极大似然法.极大验后法.最小风险法和极小

最大似然估计和最大后验概率MAP

最大似然估计是一种奇妙的东西,我觉得发明这种估计的人特别才华.如果是我,觉得很难凭空想到这样做. 极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点.频率派认为,参数是客观存在的,只是未知而矣.因此,频率派最关心极大似然函数,只要参数求出来了,给定自变量X,Y也就固定了,极大似然估计如下所示: 相反的,贝叶斯派认为参数也是随机的,和一般随机变量没有本质区别,正是因为参数不能固定,当给定一个输入x后,我们不能用一个确定的y表示输出结果,必须用一个概率的方式表达出来,所以贝叶斯学派的预测值是一