1D/1D优化dp之利用决策点的凸性优化

关于dp的优化之前做过一些简单的利用优先队列或者单调队列维护一个值就ok了,但有时候给出的方程很难直接用单调队列维护,需要转化一下思路。

这种优化方式利用数形结合,根据比较斜率来抛去一些非最优解,能将方程优化到线性,但对于一些更难得题目就需要一些数据结构维护,我暂时没接触过。

先用一道简单的题目来入手,hdu 3507 http://acm.hdu.edu.cn/showproblem.php?pid=3507

Print Article

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 13750    Accepted Submission(s): 4247

Problem Description

Zero
has an old printer that doesn‘t work well sometimes. As it is antique,
he still like to use it to print articles. But it is too old to work for
a long time and it will certainly wear and tear, so Zero use a cost to
evaluate this degree.
One day Zero want to print an article which has
N words, and each word i has a cost Ci to be printed. Also, Zero know
that print k words in one line will cost

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.

Input

There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.

Output

A single number, meaning the mininum cost to print the article.

Sample Input

5 5
5
9
5
7
5

Sample Output

230

一个显然的方程就是 f[i]=MIN{ f[j]+M+(sum[j]-sum[i])^2  },复杂度O(N^2) 显然也会T。令 k<j<i ,不妨假设如果j点作为决策点比k更优的话需要满足什么条件,显然是

f[j]+(sum[j]-sum[i])^2 < f[k]+(sum[k]-sum[i])^2   --->    f[j]+sum[j]^2-(f[k]+sum[k]^2) < 2*sum[i]*(sum[j]-sum[k] )  -------> 即  g(k,j)= ( (f[j]+sum[j]^2)-(f[k]+sum[k]^2) ) / (sum[j]-sum[k]) < 2*sum[i];

由此我们得到了一个判别式g(k,j),如果 k<j<i&&g(k,j)<2*sum[i]就足以说明j优于k。

令yj=f[j]+sum[j]^2, x[j]=sum[j],  那么简写为 (yj-yk)/(xj-xk)<2*sum[i], 像极了斜率的推导公式。从这个式子中我们得到一些性质,由于sum[i]是显然递增的,所以当前状态下如果j优于k那么

在后面的状态中j始终会优于k所以我们可以抛去k  -> 1.if(g(k,j)<=2*sum[i]) pop(k)               //ps.相等时二者等价所以可以删去        2.if(g(k,j)>=g(j,i)) pop(j)  关于这个的正确性在于

如果g(j,i)<=2*sum,显然i优于等于j; 如果g(j,i)>2*sum,那么g(k,j)>2*sum ,所以k优于j,综上 j是无用点,所以可以抛去。

有一个重要的性质在于: 所有最优决策点都在平面点集的凸包上。

令ai=-2*sum[i],xj=sum[j],yj=f[j]+sum[j],  那么min{p}=ax+y -->  y=p-ax, 当在y轴上的截距最小时有最优解p,相当于把每个sum[i]和对应的最优解当作了一个点。

将小于j的点画在平面直角坐标系上,一如线性规划,把这条斜线自下往上平移时遇到的第一个点,即能使目前状态有最小值的点。于是我们需要维护一个下凸壳,把那些肯定不会贡献的点删掉。

根据上面的推倒代码就很好写了。

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 #define qz q.size()
 4 int f[500005];
 5 int sum[500005];
 6 deque<int>q;
 7 int dy(int i,int j){return f[j]-f[i]+sum[j]*sum[j]-sum[i]*sum[i];}
 8 int dx(int i,int j){return sum[j]-sum[i];}
 9 int main()
10 {
11     int N,M,i;
12     while(scanf("%d%d",&N,&M)==2){
13         q.clear();
14         q.push_back(0);
15         for(i=1;i<=N;++i)
16         {
17             scanf("%d",sum+i);
18             sum[i]+=sum[i-1];
19          while(qz>1&&dy(q[0],q[1])<=2*dx(q[0],q[1])*sum[i]) q.pop_front();
20          f[i]=f[q.front()]+M+(sum[i]-sum[q.front()])*(sum[i]-sum[q.front()]);
21          while(qz>1&&dy(q[qz-1],i)*dx(q[qz-2],q[qz-1])<=dy(q[qz-2],q[qz-1])*dx(q[qz-1],i))q.pop_back();
22          q.push_back(i);
23         }
24         printf("%d\n",f[N]);
25     }
26     return 0;
27 }
时间: 2024-10-10 07:18:27

1D/1D优化dp之利用决策点的凸性优化的相关文章

『土地征用 Land Acquisition 斜率优化DP』

斜率优化DP的综合运用,对斜率优化的新理解. 详细介绍见『玩具装箱TOY 斜率优化DP』 土地征用 Land Acquisition(USACO08MAR) Description Farmer John is considering buying more land for the farm and has his eye on N (1 <= N <= 50,000) additional rectangular plots, each with integer dimensions (1

SEO优化之如何利用百度风云榜获取百万流量

SEO优化之如何利用百度风云榜获取百万流量 (     SEO优化一定要精细,一味的趁波逐浪最后别说分一杯羹了,可能连汤都看不到.下面我们来说一下网站优化如何运用热度风云榜,并晋升网站流量. 为什么会说到风云榜,所谓的风云榜实在就是天天发生的最新事件,如娱乐.糊口等热点搜索内容的集合.且能够非常正确的反映用户关注的信息及内容. 第一:百度风云榜 百度一下你就知道,这已经成为良多人的口头禅,只要登录百度账号在首页就可以显示实时热门百度优化之怎样利用百度风云榜百度优化之怎样利用百度风云榜.百度风云榜

算法优化》关于1D*1D的DP的优化

关于这一主题的DP问题的优化方法,我以前写过一篇博客与其有关,是关于对递推形DP的前缀和优化,那么这种优化方法就不再赘述了. 什么叫1D*1D的DP捏,就是一共有N种状态,而每种状态都要N种决策,这就叫1D*1D的DP,对于这种DP一般来说状态的转移都是可以从O(N2)优化到O(NlogN)甚至O(N)的,那么,针对于不同的情况,也有不同的优化方法 经典模型一:(b[x]随x非降) 对于DP方程形似与这一种的方程,明显的,这种DP的抉择方案数可以用单调队列直接解决化为O(1),所以对于这样的转移

决策单调性优化dp 专题练习

决策单调性优化dp 专题练习 优化方法总结 一.斜率优化 对于形如 \(dp[i]=dp[j]+(i-j)*(i-j)\)类型的转移方程,维护一个上凸包或者下凸包,找到切点快速求解 技法: 1.单调队列 : 在保证插入和查询的x坐标均具有单调性时可以使用 2.单调栈+二分:保证插入有单调性,不保证查询有单调性 3.分治+ 1 或 2:在每次分治时将\([l,mid]\)这段区间排序后插入,然后更新右区间\([mid+1,r]\)的答案 二.分治.单调队列维护有单调性的转移 (甚至还有分治套分治)

BZOJ 1010 玩具装箱toy(四边形不等式优化DP)(HNOI 2008)

Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<

石子合并(四边形不等式优化dp)

该来的总是要来的———————— 经典问题,石子合并. 对于 f[i][j]= min{f[i][k]+f[k+1][j]+w[i][j]} From 黑书 凸四边形不等式:w[a][c]+w[b][d]<=w[b][c]+w[a][d](a<b<c<d) 区间包含关系单调: w[b][c]<=w[a][d](a<b<c<d) 定理1:  如果w同时满足四边形不等式和决策单调性 ,则f也满足四边形不等式 定理2:  若f满足四边形不等式,则决策s满足 s[i

【转】斜率优化DP和四边形不等式优化DP整理

当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重循环跑状态 i,一重循环跑 i 的所有子状态)这样的时间复杂度是O(N^2)而 斜率优化或者四边形不等式优化后的DP 可以将时间复杂度缩减到O(N) O(N^2)可以优化到O(N) ,O(N^3)可以优化到O(N^2),依次类推 斜率优化DP和四边形不等式优化DP主要的原理就是利用斜率或者四边形不等式等数学方法 在所有要判断的子状态中迅速做出判断,所以这里的优化其实是省去了枚举

【BZOJ 1492】 [NOI2007]货币兑换Cash 斜率优化DP

先说一下斜率优化:这是一种经典的dp优化,是OI中利用数形结合的思想解决问题的典范,通常用于优化dp,有时候其他的一些决策优化也会用到,看待他的角度一般有两种,但均将决策看为二维坐标系上的点,并转化为维护凸壳,一种根据两点的斜率与某一常数的大小关系推断二者的优劣,一种将转移方程化为相关直线方程,通过取得最大(小)截距来求最优解.关于其实现方法上,当点的x坐标单调时,可依据比较常数是否单调选择单调队列或单调栈,而当其x坐标不单调时常常使用CDQ分治或平衡树来实现. 千万别用替罪羊来写动态凸壳!!!

[SDOI2012]任务安排 - 斜率优化dp

虽然以前学过斜率优化dp但是忘得和没学过一样了.就当是重新学了. 题意很简单(反人类),利用费用提前的思想,考虑这一次决策对当前以及对未来的贡献,设 \(f_i\) 为做完前 \(i\) 个任务的贡献,\(t_i\) 为时间前缀和, \(c_i\) 为费用前缀和,容易得到 \[f_i = Min_{0 \leq j < i} (f_j + t_i (c_i - c_j) + s (c_n - c_j)\] 直接暴力转移,时间复杂度 \(O(n^2)\) 考虑斜率优化,将转移关系变形为 \[f_j