Siamese Network

摘抄自caffe github的issue697

Siamese nets are supervised models for metric learning [1].

[1] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with application to face verification. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 539–546. IEEE, 2005. http://yann.lecun.com/exdb/publis/pdf/chopra-05.pdf

Speaking of metric learning, I remember that @norouzi had proposed and open sourced a method that learned a Hamming distance metric to distinguish similar and dissimilar images [2].

[2] Mohammad Norouzi, David J. Fleet, Ruslan Salakhutdinov, Hamming Distance Metric Learning, Neural Information Processing Systems (NIPS), 2012.

未完待续

ND,越来越赶不上更新步伐了……

时间: 2024-10-28 09:52:48

Siamese Network的相关文章

Tutorial: Implementation of Siamese Network on Caffe, Torch, Tensorflow

1. caffe version:  If you want to try this network, just do as the offical document said, like the following codes:   1 --- 2 title: Siamese Network Tutorial 3 description: Train and test a siamese network on MNIST data. 4 category: example 5 include

Siamese Network简介

Siamese Network简介 Siamese Network 是一种神经网络的框架,而不是具体的某种网络,就像seq2seq一样,具体实现上可以使用RNN也可以使用CNN. 简单的说,Siamese Network用于评估两个输入样本的相似度.网络的框架如下图所示 Siamese Network有两个结构相同,且共享权值的子网络.分别接收两个输入X1X1与X2X2,将其转换为向量Gw(X1)Gw(X1)与Gw(X2)Gw(X2),再通过某种距离度量的方式计算两个输出向量的距离EwEw. 训

论文笔记之:Fully-Convolutional Siamese Networks for Object Tracking

Fully-Convolutional Siamese Network for Object Tracking 摘要:任意目标的跟踪问题通常是根据一个物体的外观来构建表观模型.虽然也取得了不错的效果,但是他们这些 online-only approach 限制了模型可以学到的模型的丰富性.最近,已经有几个尝试开始探索深度卷积网络的强大的表达能力(express power).但是,当跟踪目标提前未知时,需要在线的执行 SGD 来适应网络的权重,严重的影响了系统的速度.本文中,我们提出一种基本的跟

基于2-channel network的图片相似度判别

一.相关理论 本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:<Learning to Compare Image Patches via Convolutional Neural Networks>,本篇文章对经典的算法Siamese Networks 做了改进.学习这篇paper的算法,需要熟悉Siamese Networks(经典老文献<Signature Verification Using a Siamese Time Delay Neural Network

Learning to Compare Image Patches via Convolutional Neural Networks --- Reading Summary

Learning to Compare Image Patches via Convolutional Neural Networks ---  Reading Summary 2017.03.08 Target: this paper attempt to learn a geneal similarity function for comparing image patches from image data directly. There are several ways in which

人脸识别(face recognition)

一.前述 1. 发展 以往的人脸识别主要是包括人脸图像采集.人脸识别预处理.身份确认.身份查找等技术和系统.现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测.行人跟踪.甚至到了动态物体的跟踪.由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理.而且算法已经由以前的Adaboots.PCA等传统的统计学方法转变为CNN.RCNN等深度学习及其变形的方法.现在也有相当一部分人开始研究3维人脸识别识别,这种项目目前也受到了学术界.工业界和国家的支持. 之后的内容主要参考了下面的链接,

(转) 深度学习在目标跟踪中的应用

深度学习在目标跟踪中的应用 原创 2016-09-05 徐霞清 深度学习大讲堂 点击上方“深度学习大讲堂”可订阅哦!深度学习大讲堂是高质量原创内容的平台,邀请学术界.工业界一线专家撰稿,致力于推送人工智能与深度学习最新技术.产品和活动信息! 开始本文之前,我们首先看上方给出的3张图片,它们分别是同一个视频的第1,40,80帧.在第1帧给出一个跑步者的边框(bounding-box)之后,后续的第40帧,80帧,bounding-box依然准确圈出了同一个跑步者.以上展示的其实就是目标跟踪(vis

patch similarity

基于2-channel  network的图片相似度判别 原文地址:http://blog.csdn.net/hjimce/article/details/50098483 作者:hjimce 一.相关理论 本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:<Learning to Compare Image Patches via Convolutional Neural Networks>,本篇文章对经典的算法Siamese Networks 做了改进.学习这篇paper的

深度学习特征检测LIFT,learnd invariant feature transform(1)

LIFT: Learned Invariant Feature Transform(1) 我的阅读翻译与理解 2016 ECCV 收录 Kwang Moo Yi?, Eduard Trulls?, Vincent Lepetit, Pascal Fua 1.介绍 在CV领域局部特征发挥重要作用,从图像中寻找与匹配它们是大量的研究工作的课题.到最近,最好的技术依赖于手工设计的特征(SIFT,SURF,ORB).在过去几年,在许多计算机视觉领域,基于machine learning或更确切说是dee