matlab实现一元线性回归和多元线性回归

在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。

在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。

多元线性回归模型的一般表现形式为

Yi=β0+β1X1i+β2X2i+…+βkXki+μi i=1,2,…,n

其中 k为解释变量的数目,βj(j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为

E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki

βj也被称为偏回归系数

1.Matlab多元线性回归模型实现

(1)b=regress( Y,  X
) 确定回归系数的点估计值

其中,Y为n*1的矩阵;X为(ones(n,1),x1,…,xm)的矩阵;

(2)[b,
bint,r,rint,stats]=regress(Y,X,alpha) 求回归系数的点估计和区间估计,并检验回归模型

  • b 回归系数
  • bint 回归系数的区间估计
  • r 残差
  • rint 残差置信区间
  • stats 用于检验回归模型的统计量,有三个数值:相关系数R2、F值、与F对应的概率p,相关系数R2越接近1,说明回归方程越显著;F
    > F1-α(k,n-k-1)时拒绝H0,F越大,说明回归方程越显著;与F对应的概率p 时拒绝H0,回归模型成立。

(3)出残差以及其置信区间:rcoplot(r,rint);

实例1:(一元线性回归)

测得16名女子的身高和腿长如下表所示(单位:cm)

试研究这些数据之间的关系。

Matlab程序为:(输入如下命令)

结果显示:

因此我们可得y=-16.0730+0.7194x 成立

(残差分析)

接着输入

结果显示

(预测及作图)

接着输入

结果显示

实例2:(多元线性回归)

水泥凝固时放出的热量y与水泥中的四种化学成分x1,x2,x3,x4有关,今测得一组数据如下,试确定多元线性模型。

Matlab程序:(输入命令)

结果显示

因此,我们得到y=-62.4045+1.55x1+0.5102x2+0.1019x3-0.1441x4成立

(残差分析)

接着输入

结果显示

接着输入

预测结果

时间: 2024-11-08 03:21:37

matlab实现一元线性回归和多元线性回归的相关文章

R语言解读多元线性回归模型

转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业

多元线性回归和多项式回归

多项式回归也称多元非线性回归,是指包含两个以上变量的非线性回归模型.对于多元非线性回归模型求解的传统解决方案,仍然是想办法把它转化成标准的线性形式的多元回归模型来处理. 多元非线性回归分析方程 如果自变数与依变数Y皆具非线性关系,或者有的为非线性有的为线性,则选用多元非线性回归方程是恰当的.例如,二元二次多项式回归方程为: 令,及于是上式化为五元一次线性回归方程: 这样以来,便可按多元线性回归分析的方法,计算各偏回归系数,建立二元二次多项式回归方程. -参考文献:智库百科,点击打开 多元二项式回

SPSS--回归-多元线性回归模型案例解析

多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x1,  x2, xp分别代表"自变量"Xp截止,代表有P个自变量,如果有"N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中: 代表随机误差, 其中随机误差分为:可解释的误差 和 不可解释的误差,随机误差必须满足以下四个条件,

【R】多元线性回归

R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整.这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及<R语言实战>的OLS(Ordinary Least Square)回归模型章节来总结一下,诊断多元线性回归模型的操作分析步骤. 1.选择预测变量 因变量比较容易确定,多元回归模型中难在自变量的选择.自变量选择主要可分为向前选择(逐次加使RSS最小的自变量),向后选择(逐

多元线性回归理论与实践

多元线性回归模型用途: 1.  回归用来拟合,解释现象: 2.  用来构建观测数据集与自变量之间一个预测模型: 3.  用来量化y与  相关性强度 假设: 1.  观测数据 相互独立 2.  随机误差服从于方差相同的正态分布 原理: ####R语言#################### 1.#########################查看数据相关性###################################### data=iris round(cor(data[,1:4]),

多元线性回归的计算

多元线性回归的计算模型 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释因变量的变化,这就是多元回归亦称多重回归.当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元线性回归. 设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b0为常数项,为回归系数,b1为固定时,x1每增加一个单位对y的效应,即x1对y的偏回归系数:同理b2

多元线性回归公式推导及R语言实现

多元线性回归 多元线性回归模型 实际中有很多问题是一个因变量与多个自变量成线性相关,我们可以用一个多元线性回归方程来表示. 为了方便计算,我们将上式写成矩阵形式: Y = XW 假设自变量维度为N W为自变量的系数,下标0 - N X为自变量向量或矩阵,X维度为N,为了能和W0对应,X需要在第一行插入一个全是1的列. Y为因变量 那么问题就转变成,已知样本X矩阵以及对应的因变量Y的值,求出满足方程的W,一般不存在一个W是整个样本都能满足方程,毕竟现实中的样本有很多噪声.最一般的求解W的方式是最小

梯度下降法求解多元线性回归

线性回归形如y=w*x+b的形式,变量为连续型(离散为分类).一般求解这样的式子可采用最小二乘法原理,即方差最小化, loss=min(y_pred-y_true)^2.若为一元回归,就可以求w与b的偏导,并令其为0,可求得w与b值:若为多元线性回归, 将用到梯度下降法求解,这里的梯度值w的偏导数,利用目标公式,loss如下: 对其求偏导,公式如下: 其中x表示为(n+1)行m列,有n个属性,m个样本,最后一行值为1给偏差的:y表示m行1列为m个样本的值: w表示(n+1)行1列为n个w对应属性

简单多元线性回归(梯度下降算法与矩阵法)

多元线性回归是最简单的机器学习模型,通过给定的训练数据集,拟合出一个线性模型,进而对新数据做出预测. 对应的模型如下: n: 特征数量. 一般选取残差平方和最小化作为损失函数,对应为: M:训练样本数量. 通过最小化代价损失函数,来求得 值,一般优化的方法有两种,第一是梯度下降算法(Gradient Descent),第二种是矩阵法(The normal equations). 梯度下降算法