POJ2155 Matrix 二维树状数组的应用

有两种方法吧,一个是利用了树状数组的性质,很HDU1556有点类似,还有一种就是累加和然后看奇偶来判断答案

题意:给你一个n*n矩阵,然后q个操作,C代表把以(x1,y1)为左上角到以(x2,y2)为右下角的矩阵取反,意思就是矩阵只有0,1元素,是0的变1,是1的变0,Q代表当前(x,y)这个点的状况,是0还是1?

区间修改有点特别,但是若区间求和弄懂了应该马上就能懂得:

				add(x2,y2,1);
				add(x2,y1,-1);//上面多修改了不需要的一部分,所以修改回来
				add(x1,y2,-1);//同上一步
				add(x1,y1,1);//往回多修改了一次 所以再正着修改一下

第一种方法,就是看一个点统计它左上角的矩阵元素和,看奇偶性,奇代表1,偶代表0,当然这种方法在区间修改的时候有点特殊,因为ADD函数修改的时候包括这个点以及它后面的,但是不能包括右下角的点,所以右下角的点坐标分别++即可

#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set>
#include<cctype>

#define ll long long
#define LL __int64
#define eps 1e-8

//const ll INF=9999999999999;

#define inf 0xfffffff

using namespace std;

//vector<pair<int,int> > G;
//typedef pair<int,int> P;
//vector<pair<int,int>> ::iterator iter;
//
//map<ll,int>mp;
//map<ll,int>::iterator p;

int n;

int c[1000 + 5][1000 + 5];

void clear() {
	memset(c,0,sizeof(c));
}

int lowbit(int x) {
	return x&(-x);
}

void add(int x,int y,int value) {
	int i = y;
	while(x <= n) {
		y = i;
		while(y <= n) {
			c[x][y] += value;
			y += lowbit(y);
		}
		x += lowbit(x);
	}
}

int get_sum(int x,int y) {
	int sum = 0;
	int j = y;
	while(x > 0) {
		y = j;
		while(y > 0) {
			sum += c[x][y];
			y -= lowbit(y);
		}
		x -= lowbit(x);
	}
	return sum;
}

int main() {
	int t;
	bool flag = false;
	scanf("%d",&t);
	while(t--) {
		if(flag)puts("");
		else flag = true;
		clear();
		int q;
		scanf("%d %d",&n,&q);
		char s[2];
		while(q--) {
			scanf("%s",s);
			if(s[0] == ‘C‘) {
				int x1,y1,x2,y2;
				scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
				x2++,y2++;
				add(x2,y2,1);
				add(x2,y1,-1);//上面多修改了不需要的一部分,所以修改回来
				add(x1,y2,-1);//同上一步
				add(x1,y1,1);//往回多修改了一次 所以再正着修改一下
			}
			else {
				int x,y;

				scanf("%d %d",&x,&y);
				int ans = get_sum(x,y);
				printf("%d\n",1&ans);
			}
		}
	}
	return 0;
}

接下来的方法利用了树状数组的性质,在HDU1556的时候就有了两种做法,一个是+1修改然后-1修改,还有一个就是直接从大到小修改 从小到大求和,跟平时的反过来就可以了,这里也就是反过来,、

这里说一下性质:从小到大修改然后从大到小求和那么求的就是一段区间的和,若反过来从大到小修改然后从小到大求和那么求的就是一个点的值

当然区间修改部分也就不需要特别处理了,跟平时一样处理即可

				add(x2,y2,1);
				add(x2,y1 - 1,-1);//上面多修改了不需要的一部分,所以修改回来
				add(x1 - 1,y2,-1);//同上一步
				add(x1 - 1,y1 - 1,1);//往回多修改了一次 所以再正着修改一下
#include<iostream>
#include<cstdio>
#include<list>
#include<algorithm>
#include<cstring>
#include<string>
#include<stack>
#include<map>
#include<vector>
#include<cmath>
#include<memory.h>
#include<set>
#include<cctype>

#define ll long long
#define LL __int64
#define eps 1e-8

//const ll INF=9999999999999;

#define inf 0xfffffff

using namespace std;

//vector<pair<int,int> > G;
//typedef pair<int,int> P;
//vector<pair<int,int>> ::iterator iter;
//
//map<ll,int>mp;
//map<ll,int>::iterator p;

int n;

int c[1000 + 5][1000 + 5];

void clear() {
	memset(c,0,sizeof(c));
}

int lowbit(int x) {
	return x&(-x);
}

void add(int x,int y,int value) {
	int i = x;
	while(y > 0) {
		x = i;
		while(x > 0) {
			c[x][y] += value;
			x -= lowbit(x);
		}
		y -= lowbit(y);
	}
}

int get_sum(int x,int y) {
	int sum = 0;
	int j = x;
	while(y <= n) {
		x = j;
		while(x <= n) {
			sum += c[x][y];
			x += lowbit(x);
		}
		y += lowbit(y);
	}
	return sum;
}

int main() {
	int t;
	bool flag = false;
	scanf("%d",&t);
	while(t--) {
		if(flag)puts("");
		else flag = true;
		clear();
		int q;
		scanf("%d %d",&n,&q);
		char s[2];
		while(q--) {
			scanf("%s",s);
			if(s[0] == ‘C‘) {
				int x1,y1,x2,y2;
				scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
				add(x2,y2,1);
				add(x2,y1 - 1,-1);//上面多修改了不需要的一部分,所以修改回来
				add(x1 - 1,y2,-1);//同上一步
				add(x1 - 1,y1 - 1,1);//往回多修改了一次 所以再正着修改一下
			}
			else {
				int x,y;
				scanf("%d %d",&x,&y);
				int ans = get_sum(x,y);
				printf("%d\n",1&ans);
			}
		}
	}
	return 0;
}

POJ2155 Matrix 二维树状数组的应用,码迷,mamicode.com

时间: 2024-10-14 13:10:23

POJ2155 Matrix 二维树状数组的应用的相关文章

[poj2155]Matrix(二维树状数组)

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ2155 Matrix 二维树状数组应用

一个N*N(1<=N<=1000)的矩阵,从(1,1)开始,给定一些操作C和一些查询Q,一共K条(1<=K<=50000): C x1,y1,x2,y2 表示从x1行y1列到x2行y2列的元素全部反转(0变成1,1变成0): Q x y表示询问x行y列的元素是0还是1. 题目乍一看感觉还是很难,如果能记录每一个元素的状态值,那答案是显而易见的,但是元素过多,如果每次都对每一个元素进行更新状态的话,复杂度太高.实际上只要记录边界的特定坐标的反转次数,最好的选择那就是二维树状数组了.

POJ2155:Matrix(二维树状数组,经典)

Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). We can change the matrix in the following way. Given a rectangle whose upp

Matrix 二维树状数组的第二类应用

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 17976   Accepted: 6737 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ 2155 Matrix(二维树状数组,绝对具体)

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ 2155 Matrix(二维树状数组,绝对详细)

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ 2155 Matrix 二维树状数组

Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 19174   Accepted: 7207 Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1

POJ - 2155 Matrix (二维树状数组 + 区间改动 + 单点求值 或者 二维线段树 + 区间更新 + 单点求值)

POJ - 2155 Matrix Time Limit: 3000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Submit Status Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we ha

Matrix (二维树状数组)

Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N). We can change the matrix in the following way. Given a rectangle whose upp