(转)递归树求递归算法的时间复杂度

本文转载:http://www.cnblogs.com/wu8685/archive/2010/12/21/1912347.html

  递归算法时间复杂度的计算方程式一个递归方程:

  

  在引入递归树之前可以考虑一个例子:

  T(n) = 2T(n/2) + n2

  迭代2次可以得:

  T(n) = n2 + 2(2T(n/4) + (n/2) 2)

  还可以继续迭代,将其完全展开可得:

  T(n) = n2 + 2((n/2) 2 + 2((n/22)2 + 2((n/23) 2 + 2((n/24) 2 +…+2((n/2i) 2 +
2T(n/2i + 1)))…))))  ……(1)

  而当n/2i+1 == 1时,迭代结束。

  将(1)式小括号展开,可得:

  T(n) = n2 + 2(n/2)2 + 22(n/22) 2 + … + 2i(n/2i)2 + 2i+1T(n/2i+1)

  这恰好是一个树形结构,由此可引出递归树法。

  图中的(a)(b)(c)(d)分别是递归树生成的第1,2,3,n步。每一节点中都将当前的自由项n2留在其中,而将两个递归项T(n/2) + T(n/2)分别摊给了他的两个子节点,如此循环。

  图中所有节点之和为:

  [1 + 1/2 + (1/2)2 + (1/2)3 + … + (1/2)i] n2 = 2n2

  可知其时间复杂度为O(n2)

  

  可以得到递归树的规则为:

  (1) 每层的节点为T(n) = kT(n / m) + f(n)中的f(n)在当前的n/m下的值;

  (2) 每个节点的分支数为k;

  (3)每层的右侧标出当前层中所有节点的和。

  再举个例子:

  T(n) = T(n/3) + T(2n/3) + n

  其递归树如下图所示:

  

  可见每层的值都为n,从根到叶节点的最长路径是:

  

  因为最后递归的停止是在(2/3)kn == 1.则

      

  于是

    

  即T(n) = O(nlogn) 

  总结,利用此方法解递归算法复杂度:

  f(n) = af(n/b) + d(n)

  1.当d(n)为常数时:

  

  2.当d(n) = cn 时:

  

  3.当d(n)为其他情况时可用递归树进行分析。

  

  由第二种情况知,若采用分治法对原算法进行改进,则着重点是采用新的计算方法缩小a值。

(转)递归树求递归算法的时间复杂度

时间: 2024-10-01 02:53:56

(转)递归树求递归算法的时间复杂度的相关文章

斐波那契数与二分法的递归与非递归算法及其复杂度分析

1. 什么是斐波那契数? 这里我借用百度百科上的解释:斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列.费波那西数列.费波拿契数.费氏数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.--在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字来说,就是斐波那契数列列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加.特别指出:0不是第一

利用Trie树求多个字符串编辑距离的进一步优化

1.引言 题目的意思应该是:在一个给定的字典中,求与给定的字符串的编辑距离不大于2的所有的单词.原先写过两片关于此问题的文章,那两片篇章文章给出两种解决思路:其一是暴力求解法,这种方法最容易想到.就是将词典中的词一一与给定的字符串计算编辑距离,不大于2的输出,大于2的舍弃,这种方法思路简单但是很费时间.其二根据词典中这些词之间的编辑距离建立一个以单词为节点的Trie树,遍历的时候,通过计算根节点与给定字符串的编辑距离就可以排除掉一部分分支了,然后继续计算该字符串与剩余的分支的根的编辑距离,继续排

递归算法的时间复杂度分析 转载

在算法分析中,当一个算法中包含递归调用时,其时间复杂度的分析会转化为一个递归方程求解.实际上,这个问题是数学上求解渐近阶的问题,而递归方程的形式多种多样,其求解方法也是不一而足,比较常用的有以下四种方法: (1)代入法(Substitution Method)        代入法的基本步骤是先推测递归方程的显式解,然后用数学归纳法来验证该解是否合理.        (2)迭代法(Iteration Method)        迭代法的基本步骤是迭代地展开递归方程的右端,使之成为一个非递归的和

BNU 2418 Ultra-QuickSort (线段树求逆序对)

题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=2418 解题报告:就是给你n个数,然后让你求这个数列的逆序对是多少?题目中n的范围是n < 500000,所以,暴力是不行的.还是第一次学会用线段树求逆序数,这种方法的时间复杂度是n * log n,是不是很快呢,利用了线段树查询速度快的优势.具体的方法如下: 这里先说一下,如果输入的n个数不是连续的,也就是说把这n个数按从小到大的顺序排列起来不是连续的话,还要先离散化一下,其实也就是把

线段树求LIS并统计最长子序列个数

以下面的题目为例(题目和代码在最后面),给定一个数列(长度最大为10000),求出最长的先增后减子序列长度及个数.做法是先求出以每一个位置结尾的最长单增子序列长度以及以该位置开头的最长单减子序列长度,然后遍历所有位置找出最大先增后减子序列长度. 以最长单增序列(LIS)为例,由于不仅需要整个序列LIS的长度,还要保存以每个位置为结尾位置的LIS长度.记以a[i]结尾的LIS长度为dp[i],则 dp[i] = max{dp[j] | a[j] < a[i]} + 1 这就是一个RMQ问题,涉及单

HDU 1542 Atlantis (线段树求矩阵覆盖面积)

题意:给你n个矩阵求覆盖面积. 思路:看了别人的结题报告 给定一个矩形的左下角坐标和右上角坐标分别为:(x1,y1).(x2,y2),对这样的一个矩形,我们构造两条线段,一条定位在x1,它在y坐标的区间是[y1,y2],并且给定一个cover域值为1:另一条线段定位在x2,区间一样是[y1,y2],给定它一个cover值为-1.根据这样的方法对每个矩形都构造两个线段,最后将所有的线段根据所定位的x从左到右进行排序 #include <iostream> #include <stdio.h

线段树求逆序数方法 HDU1394&amp;&amp;POJ2299

为什么线段树可以求逆序数? 给一个简单的序列 9 5 3 他的逆序数是3 首先要求一个逆序数有两种方式:可以从头开始往后找比当前元素小的值,也可以从后往前找比当前元素大的值,有几个逆序数就是几. 线段树就是应用从后往前找较大值得个数.(一边更新一边查) 当前个数是 n = 10 元素   9  5   3 9先加入线段树,T[9]+=1:查从T[9]到T[10]比9大的值,没有sum = 0: 5 加入线段树,T[5] += 1,查从T[5]到T[10]比5大的值,有一个9,sum +=1: 3

杭电 1754 I Hate It(线段树求最值)

http://acm.hdu.edu.cn/showproblem.php?pid=1754 I Hate It Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 38601    Accepted Submission(s): 15270 Problem Description 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某

二叉树的前序、中序、后序遍历的递归和非递归算法实现

1 /** 2 * 二叉树的前序.中序.后序遍历的递归和非递归算法实现 3 **/ 4 5 //二叉链表存储 6 struct BTNode 7 { 8 struct BTNode *LChild; // 指向左孩子指针 9 ELEMENTTYPE data; // 结点数据 10 struct BTNode *RChild; // 指向右孩子指针 11 }; 12 13 /** 14 * 前序遍历 15 **/ 16 // 递归实现 17 void PreorderTraversal(BTNo