三维CAD建模——基于半边数据结构的基本欧拉操作建模

三维CAD建模——基于半边数据结构的基本欧拉操作建模(elar, B_REP)

今年选了高老师的三维CAD建模课,zju选了这课应该就知道最后要做一个程序作业——基于半边数据结构的基本欧拉操作实现建模。要求必须建带有洞的模型。

3.3 欧拉操作的选择(6维空间的5维超平面)

v    e     f     h   r    s     Operator

1    1     0    0   0    0       mev

0    1     1    0   0    0       mef

1    0     1    0   0    1       mvfs

0   -1     0    0   1    0       kemr

0    0    -1   1    1    0      kfmrh

mvsf:生成含有一个点的面,包括一个空环,并且构成一个新的体

mev:生成一个新的点e2,连接该点到已有点v1,构造一条新的边

mef:连接面f1上的两个点v1,v2,生成一条新边e,并产生一个新面

kemr:删除一条边e,生成该边某一邻面上的新的内环

kfmrh:删除与面f1相接触的一个面f2,生成面f1上的一个内环,并形成体上的一个通孔

主要就是实现这五个欧拉操作就可以了。

下面主要是记录下我在作业中半边数据结构以及基本欧拉操作的实现。

#ifndef __HALF_EDGE_STRUCTURE__
#define __HALF_EDGE_STRUCTURE__

#include <stdlib.h>

struct Solid;
struct Face;
struct Loop;
struct HalfEdge;
struct Vertex;
struct Edge;

struct Solid
{
	int id;
	Face *faces; // list of all faces to construct this solid
	Edge *edges; // list of all edges to construct this solid->to build the frame
	Solid *next;
	Solid *pre;

	int vnum;//the count of all vertexs
	int fnum;//the count of all faces
	int lnum;//the count of all loops

	Solid() : id(0), faces(NULL), edges(NULL), next(NULL), pre(NULL), fnum(0), vnum(0), lnum(0){}
};

struct Face
{
	int id;
	Solid *solid; // the solid which the face belong to
	Loop *out_lp; // out loop of the face--construct the face
	Loop *inner_lp;//inner_lp of the face--inner loop
	Face *next;
	Face *pre;
	int innum;//the count of inner loops

	Face() : id(0), solid(NULL), out_lp(NULL), next(NULL), pre(NULL), inner_lp(NULL), innum(0){}
};

struct Loop
{
	int id;
	HalfEdge *halfedges; // list of all halfeges to construct this loop
	Face *face; // the face that constructed by this loop
	Loop *next;
	Loop *pre;

	Loop() : id(0), halfedges(NULL), face(NULL), next(NULL), pre(NULL){}
};

struct Edge
{
	HalfEdge *half_l; //the edge's left halfedge
	HalfEdge *half_r; //the edge's right halfedge
	Edge *next;
	Edge *pre;

	Edge() : half_l(NULL), half_r(NULL), next(NULL), pre(NULL){}
};

struct HalfEdge
{
	Edge *edge; //this halfedge belong to which edge
	Vertex *sv; //the start vertex of this halfedge
	Vertex *ev; //the end vertex of this halfedge
	Loop *lp; //pointer to the loop that this halfedge belong to
	HalfEdge *next;
	HalfEdge *pre;
	HalfEdge *brother;

	HalfEdge() : edge(NULL), sv(NULL), lp(NULL), next(NULL), pre(NULL), brother(NULL){}
};

struct Vertex
{
	int id;
	double coordinate[3];//coordinate of the vertex (x, y, z)
	Vertex *next;
	Vertex *pre;

	Vertex(double x, double y, double z) : id(0), next(NULL), pre(NULL)
	{
		coordinate[0] = x;
		coordinate[1] = y;
		coordinate[2] = z;
	}
};

#endif

下面是五种欧拉操作的实现代码

elar_operator.h

#ifndef __ELAR_OPERATOR__
#define __ELAR_OPERATOR__

#include "half_edge_structure.h"
#include <vector>

using namespace std;

class ElarOperator
{
public:
	ElarOperator()
	{
		v_list.clear();
		sweep_list.clear();
		l_list.clear();
	}

	std::vector<Vertex *> getV_list()
	{
		return v_list;
	}

	std::vector<Face *> getSweep_list()
	{
		return sweep_list;
	}

	std::vector<Loop *> getLoop_list()
	{
		return l_list;
	}

	void addEdgeIntoSolid(Edge *edge, Solid *&solid);
	void addFaceIntoSolid(Face *face, Solid *&solid);
	void addLoopIntoFace(Loop *loop, Face *face);
	Solid *mvfs(double point[3], Vertex *&vertex);
	HalfEdge *mev(Vertex *sv, double point[3], Loop *lp);
	Loop *mef(Vertex *sv, Vertex *ev, Loop *lp, bool mark);
	Loop *kemr(Vertex *sv, Vertex *ev, Loop *lp);
	void kfmrh(Face *fa, Face *fb);
	void sweep(double dir[3], double dist);

private:
	std::vector<Vertex *> v_list;
	std::vector<Loop *> l_list;
	std::vector<Face *> sweep_list;
};

#endif

elar_operator.cpp

#include "elar_operator.h"
#include <cstdio>

Solid *ElarOperator::mvfs(double point[3], Vertex *&vertex)
{
	Solid *solid = new Solid();
	Face *face = new Face();
	Loop *out_lp = new Loop();
	vertex = new Vertex(point[0], point[1], point[2]);

	vertex->id = solid->vnum;
	out_lp->id = solid->lnum;
	face->id = solid->fnum;

	l_list.push_back(out_lp);
	//printf("%lf %lf %lf\n", vertex->coordinate[0], vertex->coordinate[1], vertex->coordinate[2]);
	v_list.push_back(vertex);//store the vertex by order
	solid->vnum += 1;//increase the num of vertexs
	solid->fnum += 1;//increase the num of faces
	solid->lnum += 1;//increase the num of loops

	solid->faces = face;
	face->solid = solid;

	face->out_lp = out_lp;
	out_lp->face = face;

	return solid;
}

HalfEdge *ElarOperator::mev(Vertex *sv, double point[3], Loop *loop)
{
	Solid *solid = loop->face->solid;
	Edge *edge = new Edge();//create a new edge
	HalfEdge *half_l = new HalfEdge();
	HalfEdge *half_r = new HalfEdge();
	Vertex *ev = new Vertex(point[0], point[1], point[2]);

	ev->id = solid->vnum;
	v_list.push_back(ev);//store the vertex by order
	solid->vnum += 1;//remember to increase the vertex num of the solid

	half_l->sv = sv;
	half_l->ev = ev;
	half_r->sv = ev;
	half_r->ev = sv;

	edge->half_l = half_l;
	edge->half_r = half_r;
	half_l->edge = edge;
	half_r->edge = edge;

	half_r->brother = half_l;
	half_l->brother = half_r;

	half_l->lp = loop;
	half_r->lp = loop;

	//add the new two halfedges into the loop
	if (loop->halfedges == NULL)
	{
		half_l->next = half_r;
		half_r->next = half_l;

		half_l->pre = half_r;
		half_r->pre = half_l;
		loop->halfedges = half_l;
	}
	else
	{
		HalfEdge *thalf = loop->halfedges;
		while (thalf->ev != sv)thalf = thalf->next;
		half_r->next = thalf->next;
		thalf->next->pre = half_r;
		thalf->next = half_l;
		half_l->pre = thalf;
		half_l->next = half_r;
		half_r->pre = half_l;
	}

	//add the edge into the edge list of solid
	addEdgeIntoSolid(edge, solid);
	return half_l;
}

Loop *ElarOperator::mef(Vertex *sv, Vertex *ev, Loop *loop, bool mark)
{
	Solid *solid = loop->face->solid;
	Edge *edge = new Edge();
	HalfEdge *half_l = new HalfEdge();
	HalfEdge *half_r = new HalfEdge();
	Loop *newLoop = new Loop();

	half_l->sv = sv;
	half_l->ev = ev;
	half_r->sv = ev;
	half_r->ev = sv;

	half_r->brother = half_l;
	half_l->brother = half_r;

	half_l->edge = edge;
	half_r->edge = edge;
	edge->half_l = half_l;
	edge->half_r = half_r;

	//add the new two halfedge into the loop
	HalfEdge *thalf = loop->halfedges;
	HalfEdge *tmpa, *tmpb, *tmpc;
	while (thalf->ev != sv)thalf = thalf->next;
	tmpa = thalf;

	while (thalf->ev != ev)thalf = thalf->next;
	tmpb = thalf;

	thalf = thalf->next;
	while (thalf->ev != ev)thalf = thalf->next;
	tmpc = thalf;

	//divide the big loop into two small loop
	half_r->next = tmpa->next;
	tmpa->next->pre = half_r;
	tmpa->next = half_l;
	half_l->pre = tmpa;

	half_l->next = tmpb->next;
	tmpb->next->pre = half_l;
	tmpb->next = half_r;
	half_r->pre = tmpb;
	loop->halfedges = half_l;
	newLoop->halfedges = half_r;
	half_l->lp = loop;
	half_r->lp = newLoop;

	Face *face = new Face();

	newLoop->id = solid->lnum;
	solid->lnum += 1;
	l_list.push_back(newLoop);
	//add face into the face list of solid
	addFaceIntoSolid(face, solid);

	addLoopIntoFace(newLoop, face);

	if (tmpc == tmpb)
	{
		if (mark)//only the face in the bottom
		{
			sweep_list.push_back(half_l->lp->face);
		}
	}
	else
	{
		sweep_list.push_back(half_r->lp->face);
	}

	//add edge into the edge list of solid
	addEdgeIntoSolid(edge, solid);

	return loop;
}

Loop *ElarOperator::kemr(Vertex *sv, Vertex *ev, Loop *loop)//sv must belong to the outer loop
{
	HalfEdge *tmpa, *tmpb, *hal;
	Face *face = loop->face;
	Loop *inlp = new Loop();
	Solid *solid = loop->face->solid;

	hal = loop->halfedges;

	while (hal->sv != sv || hal->ev != ev)hal = hal->next;
	tmpa = hal;

	while (hal->sv != ev || hal->ev != sv)hal = hal->next;
	tmpb = hal;

	tmpb->pre->next = tmpa->next;
	tmpa->pre->next = tmpb->next;

	loop->face->solid->faces->out_lp->halfedges = tmpa->pre;

	inlp->halfedges = tmpb->pre;
	tmpb->pre->lp = inlp; 

	inlp->id = solid->lnum;
	solid->lnum += 1;
	l_list.push_back(inlp);

	addLoopIntoFace(inlp, tmpa->pre->brother->lp->face);

	delete tmpa;
	delete tmpb;

	return NULL;
}

void ElarOperator::kfmrh(Face *fa, Face *fb)//fa indicate the outface, fb indicate the innerface
{
	Loop *loop = fb->out_lp;
	addLoopIntoFace(loop, fa);
	fa->solid->lnum -= 1;
	fa->solid->fnum -= 1;

	Solid *solid = fa->solid;
	Face *face = solid->faces;
	if (face == fb)
	{
		solid->faces = face->next;
	}
	else
	{
		Face *tf = face;
		while (face != fb && face != NULL)
		{
			tf = face;
			face = face->next;
		}
		tf->next = face->next;
	}
	delete fb;
}

void ElarOperator::sweep(double dir[3], double d)
{
	Vertex *startv, *nextv, *upv, *upprev;
	HalfEdge *he, *suphe, *uphe;
	double point[3];

	vector<Face *>::iterator ite;
	for (ite = sweep_list.begin(); ite != sweep_list.end(); ++ite)
	{

		//solve the first vertex when process the sweeping operator
		Loop *loop = (*ite)->out_lp;
		he = loop->halfedges;
		startv = he->sv;
		point[0] = startv->coordinate[0] + d*dir[0];
		point[1] = startv->coordinate[1] + d*dir[1];
		point[2] = startv->coordinate[2] + d*dir[2];

		suphe = mev(startv, point, loop);//acquire the first down_to_up halfedge
		upprev = suphe->ev;//record the fist up vertex as the pre vertex
		he = he->next;
		nextv = he->sv;

		Loop *lp = loop;

		while (nextv != startv)
		{
			point[0] = nextv->coordinate[0] + d*dir[0];
			point[1] = nextv->coordinate[1] + d*dir[1];
			point[2] = nextv->coordinate[2] + d*dir[2];
			uphe = mev(nextv, point, lp);
			upv = uphe->ev;

			lp = mef(upprev, upv, loop, false);

			upprev = upv;
			he = he->next;
			nextv = he->sv;
		}
		mef(upprev, suphe->ev, loop, false);

	}
}

inline
void ElarOperator::addEdgeIntoSolid(Edge *edge, Solid *&solid)
{
	Edge *te = solid->edges;

	if (te == NULL)solid->edges = edge;
	else{
		while (te->next != NULL)te = te->next;
		te->next = edge;
		edge->pre = te;
	}
}

inline
void ElarOperator::addFaceIntoSolid(Face *face, Solid *&solid)
{
	Face *tface = solid->faces;
	if (tface == NULL)
	{
		solid->faces = face;
	}
	else
	{
		while (tface->next != NULL)tface = tface->next;
		tface->next = face;
		face->pre = tface;
	}
	face->solid = solid;

	face->id = solid->fnum;

	solid->fnum += 1;// increase the num of faces
}

inline
void ElarOperator::addLoopIntoFace(Loop *loop, Face *face)
{
	loop->face = face;

	//there is only one out loop but there may have lots of inner loop
	if (face->out_lp == NULL)
	{
		face->out_lp = loop;
	}
	else
	{
		Loop *tlp = face->inner_lp;
		if (tlp == NULL)face->inner_lp = loop;
		else
		{
			while (tlp->next != NULL)tlp = tlp->next;
			tlp->next = loop;
			loop->pre = tlp;
		}
		face->innum += 1;
	}
}

上面就是基本实现,然后加上自己的输入输出就可以实现带洞模型的建造。

以上就是简单建了带洞模型,当然可以在体内建更多的洞,建不同形状的洞,这样就完成了作业要求。

各个操作都挺简单,关键是mef的时候要注意选取面环时的法向问题就可以了。用右手规则比划一下就能很容易的确定了。每个洞扫成完成后要记得kfmrh来得到这个洞。

ok,就这些了。

以上代码链接:http://download.csdn.net/detail/iaccepted/8167679

时间: 2024-11-09 05:45:47

三维CAD建模——基于半边数据结构的基本欧拉操作建模的相关文章

三维CAD塑造——基于所述基本数据结构一半欧拉操作模型

三维CAD塑造--基于所述基本数据结构一半欧拉操作模型(elar, B_REP) (欧拉操作  三维CAD建模课程 三维CAD塑造 高曙明老师  渲染框架 brep 带洞 带柄 B_REP brep elar 扫成 扫成操作) 今年选了高老师的三维CAD建模课.zju选了这课应该就知道最后要做一个程序作业--基于半边数据结构的基本欧拉操作实现建模.要求必须建带有洞的模型. (欧拉操作  三维CAD建模课 三维CAD建模 高署明老师  渲染框架 brep 带洞 带柄 B_REP brep elar

poj 2478 Farey Sequence(基于素数筛法求欧拉函数)

http://poj.org/problem?id=2478 求欧拉函数的模板. 初涉欧拉函数,先学一学它基本的性质. 1.欧拉函数是求小于n且和n互质(包括1)的正整数的个数.记为φ(n). 2.欧拉定理:若a与n互质,那么有a^φ(n) ≡ 1(mod n),经常用于求幂的模. 3.若p是一个质数,那么φ(p) = p-1,注意φ(1) = 1. 4.欧拉函数是积性函数: 若m与n互质,那么φ(nm) = φ(n) * φ(m). 若n = p^k且p为质数,那么φ(n) = p^k - p

背景建模技术(二):BgsLibrary的框架、背景建模的37种算法性能分析、背景建模技术的挑战

背景建模技术(二):BgsLibrary的框架.背景建模的37种算法性能分析.背景建模技术的挑战 1.基于MFC的BgsLibrary软件下载 下载地址:http://download.csdn.net/detail/frd2009041510/8691475 该软件平台中包含了37种背景建模算法,可以显示输入视频/图像.基于背景建模得到的前景和背景建模得到的背景图像,还可以显示出每种算法的计算复杂度等等.并且,测试的可以是视频.图片序列以及摄像头输入视频.其界面如下图所示: 2.BgsLibr

基于jQuery的input输入框下拉提示层(自动邮箱后缀名)

基于jQuery的input输入框下拉提示层,方便用户输入邮箱时的提示信息,需要的朋友可以参考下 效果图 // JavaScript Document (function($){ $.fn.extend({ "changeTips":function(value){ value = $.extend({ divTip:"" },value) var $this = $(this); var indexLi = 0; //点击document隐藏下拉层 $(docum

在Jena框架下基于MySQL数据库实现本体的存取操作

在Jena框架下基于MySQL数据库实现本体的存取操作 转自:http://blog.csdn.net/jtz_mpp/article/details/6224311 最近在做一个基于本体的管理系统.其中对本体的操作部分,我使用的是Jena框架:数据模型是基于本体的语义模型:数据存储则是MySQL 5.5.9版本.由此看来,将本体模型存入数据库和从数据库中取出模型是常用的操作,这里总结一下我学到的方法. 我使用的开发环境是Eclipse3.6,在开发前要将必要的与jena有关的类包加入java

将CAD图纸转换成PNG格式应该如何进行操作?

将CAD图纸转换成PNG格式应该如何进行操作?相信大部分从事CAD相关工作的小伙伴们都会知道如何将一张CAD图纸文件转换成图片的格式全部操作步骤的,那么我们应该如何将CAD图纸文件转换成图片中的PNG格式呢,关于这个问题,今天小编就来教教大家关于解决的全部操作步骤,希望大家能够进行采纳! 步骤一:需要进行图纸格式转换的,必须要有一款好用的转换器软件,您首先要打开你们电脑上面的迅捷CAD转换器软件,电脑上面没有这款软件的可以去到官网上面或是软件商店上面进行下载安装!步骤二:将其下载之后安装到你们的

将一张CAD 2014图纸转换成JPG格式要如何操作?

将一张CAD 2014图纸转换成JPG格式要如何操作?一般在CAD设计师完成绘制一张CAD图纸文件之后为了方便图纸的查看会需要将这张CAD图纸文件转换成图片的格式,那么具体我们应该怎么样进行操作来将其进行转换,下面小编就要来教大家的就是将一张CAD 2014的图纸转换成JPG格式要如何操作的全部步骤,希望能够帮助到你们! 步骤一:首先需要打开电脑上面的浏览器然后搜索迅捷CAD进入官网在官网上查找到一款迅捷CAD转换器的软件然后点击进行下载!步骤二:将其下载之后安装到你们的电脑桌面上,然后就可以准

基于LVM逻辑卷下的磁盘配额操作

我们继续接上篇进行的LVM逻辑卷进行接下来的磁盘配额的学习本章操作内容接上篇lvm逻辑卷,如果没有看过上篇博客操作的小伙伴,可在操作完逻辑卷的内容时候再继续跟着本篇内容进行磁盘配额的操作! 磁盘配额概述:1.需要磁盘限额的条件 需要Linux内核支持 安装xfsprogs与quota软件包2.Linux磁盘限额的特点 作用范围:针对指定的文件系统(分区) 限制对象:用户账号.组账号 限制类型:磁盘容量.文件数量 限制方法:软限制.硬限制 磁盘配额的过程:以支持配额功能的方式挂载文件系统↓编辑用户

基于卡方分箱的评分卡建模

卡方分布-chi-square distribution, χ2-distribution: 若k个独立的随机变量Z1, Z2,..., Zk 满足标准正态分布 N(0,1) , 则这k个随机变量的平方和: 为服从自由度为k的卡方分布,记作:  或者  卡方检验-χ2检验是以χ2分布为基础的一种假设检验方法,主要用于分类变量之间的独立性检验: 基本思想是根据样本数据推断总体分布与期望分布是否有显著性差异,或者推断两个分类变量是否相关或者独立.一般可以设原假设为 :观察频数与期望频数没有差异,或者