HDFS的运行原理(转)

简介

HDFS(Hadoop Distributed File System )Hadoop分布式文件系统。是根据google发表的论文翻版的。论文为GFS(Google File System)Google 文件系统(中文英文)。

HDFS有很多特点

① 保存多个副本,且提供容错机制,副本丢失或宕机自动恢复。默认存3份。

② 运行在廉价的机器上。

③ 适合大数据的处理。多大?多小?HDFS默认会将文件分割成block,64M为1个block。然后将block按键值对存储在HDFS上,并将键值对的映射存到内存中。如果小文件太多,那内存的负担会很重。

如上图所示,HDFS也是按照Master和Slave的结构。分NameNode、SecondaryNameNode、DataNode这几个角色。

NameNode:是Master节点,是大领导。管理数据块映射;处理客户端的读写请求;配置副本策略;管理HDFS的名称空间;

SecondaryNameNode:是一个小弟,分担大哥namenode的工作量;是NameNode的冷备份;合并fsimage和fsedits然后再发给namenode。

DataNode:Slave节点,奴隶,干活的。负责存储client发来的数据块block;执行数据块的读写操作。

热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。

冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。

fsimage:元数据镜像文件(文件系统的目录树。)

edits:元数据的操作日志(针对文件系统做的修改操作记录)

namenode内存中存储的是=fsimage+edits。

SecondaryNameNode负责定时默认1小时,从namenode上,获取fsimage和edits来进行合并,然后再发送给namenode。减少namenode的工作量。



工作原理

写操作:

有一个文件FileA,100M大小。Client将FileA写入到HDFS上。

HDFS按默认配置。

HDFS分布在三个机架上Rack1,Rack2,Rack3。

a. Client将FileA按64M分块。分成两块,block1和Block2;

b. Client向nameNode发送写数据请求,如图蓝色虚线①------>。

c. NameNode节点,记录block信息。并返回可用的DataNode,如粉色虚线②--------->。

Block1: host2,host1,host3

Block2: host7,host8,host4

原理:

NameNode具有RackAware机架感知功能,这个可以配置。

若client为DataNode节点,那存储block时,规则为:副本1,同client的节点上;副本2,不同机架节点上;副本3,同第二个副本机架的另一个节点上;其他副本随机挑选。

若client不为DataNode节点,那存储block时,规则为:副本1,随机选择一个节点上;副本2,不同副本1,机架上;副本3,同副本2相同的另一个节点上;其他副本随机挑选。

d. client向DataNode发送block1;发送过程是以流式写入。

流式写入过程,

 1>将64M的block1按64k的package划分;

2>然后将第一个package发送给host2;

3>host2接收完后,将第一个package发送给host1,同时client想host2发送第二个package;

4>host1接收完第一个package后,发送给host3,同时接收host2发来的第二个package。

5>以此类推,如图红线实线所示,直到将block1发送完毕。

6>host2,host1,host3向NameNode,host2向Client发送通知,说“消息发送完了”。如图粉红颜色实线所示。

7>client收到host2发来的消息后,向namenode发送消息,说我写完了。这样就真完成了。如图黄色粗实线

8>发送完block1后,再向host7,host8,host4发送block2,如图蓝色实线所示。

9>发送完block2后,host7,host8,host4向NameNode,host7向Client发送通知,如图浅绿色实线所示。

10>client向NameNode发送消息,说我写完了,如图黄色粗实线。。。这样就完毕了。

分析,通过写过程,我们可以了解到:

写1T文件,我们需要3T的存储,3T的网络流量贷款。

在执行读或写的过程中,NameNode和DataNode通过HeartBeat进行保存通信,确定DataNode活着。如果发现DataNode死掉了,就将死掉的DataNode上的数据,放到其他节点去。读取时,要读其他节点去。

挂掉一个节点,没关系,还有其他节点可以备份;甚至,挂掉某一个机架,也没关系;其他机架上,也有备份。

读操作:

读操作就简单一些了,如图所示,client要从datanode上,读取FileA。而FileA由block1和block2组成。

那么,读操作流程为:

a. client向namenode发送读请求。

b. namenode查看Metadata信息,返回fileA的block的位置。

block1:host2,host1,host3

block2:host7,host8,host4

c. block的位置是有先后顺序的,先读block1,再读block2。而且block1去host2上读取;然后block2,去host7上读取;

上面例子中,client位于机架外,那么如果client位于机架内某个DataNode上,例如,client是host6。那么读取的时候,遵循的规律是:

优选读取本机架上的数据



HDFS中常用到的命令

1、hadoop fs

[java] view plaincopy

  1. hadoop fs -ls /
  2. hadoop fs -lsr
  3. hadoop fs -mkdir /user/hadoop
  4. hadoop fs -put a.txt /user/hadoop/
  5. hadoop fs -get /user/hadoop/a.txt /
  6. hadoop fs -cp src dst
  7. hadoop fs -mv src dst
  8. hadoop fs -cat /user/hadoop/a.txt
  9. hadoop fs -rm /user/hadoop/a.txt
  10. hadoop fs -rmr /user/hadoop/a.txt
  11. hadoop fs -text /user/hadoop/a.txt
  12. hadoop fs -copyFromLocal localsrc dst 与hadoop fs -put功能类似。
  13. hadoop fs -moveFromLocal localsrc dst 将本地文件上传到hdfs,同时删除本地文件。

2、hadoop fsadmin

[java] view plaincopy

  1. hadoop dfsadmin -report
  2. hadoop dfsadmin -safemode enter | leave | get | wait
  3. hadoop dfsadmin -setBalancerBandwidth 1000

3、hadoop fsck

4、start-balancer.sh

时间: 2024-11-06 11:12:17

HDFS的运行原理(转)的相关文章

【Hadoop】HDFS的运行原理

简介 HDFS(Hadoop Distributed File System )Hadoop分布式文件系统.是根据google发表的论文翻版的.论文为GFS(Google File System)Google 文件系统(中文,英文). HDFS有很多特点: ① 保存多个副本,且提供容错机制,副本丢失或宕机自动恢复.默认存3份. ② 运行在廉价的机器上. ③ 适合大数据的处理.多大?多小?HDFS默认会将文件分割成block,64M为1个block.然后将block按键值对存储在HDFS上,并将键

HDFS的运行原理

简介 HDFS(Hadoop Distributed File System )Hadoop分布式文件系统.是根据google发表的论文翻版的.论文为GFS(Google File System)Google 文件系统(中文,英文). HDFS有很多特点: ① 保存多个副本,且提供容错机制,副本丢失或宕机自动恢复.默认存3份. ② 运行在廉价的机器上. ③ 适合大数据的处理.多大?多小?HDFS默认会将文件分割成block,64M为1个block.然后将block按键值对存储在HDFS上,并将键

Spark3000门徒第七课Spark运行原理及RDD解密总结

今晚听了王家林老师的第七课Spark运行原理及RDD解密,课后作业是:spark基本原理,我的总结如下: 1 spark是分布式 基于内存 特别适合于迭代计算的计算框架 2 mapReduce就两个阶段map和reduce,而spark是不断地迭代计算,更加灵活更加强大,容易构造复杂算法. 3 spark不能取代hive,hive做数据仓库存储,spark sql只是取代hive的计算引擎 4 spark中间数据可以在内存也可以在磁盘 5 partition是一个数据集合 6 注意:初学者执行多

【转载】Spark系列之运行原理和架构

参考 http://www.cnblogs.com/shishanyuan/p/4721326.html 1. Spark运行架构 1.1 术语定义 lApplication:Spark Application的概念和Hadoop MapReduce中的类似,指的是用户编写的Spark应用程序,包含了一个Driver 功能的代码和分布在集群中多个节点上运行的Executor代码: lDriver:Spark中的Driver即运行上述Application的main()函数并且创建SparkCon

[Spark內核] 第41课:Checkpoint彻底解密:Checkpoint的运行原理和源码实现彻底详解

本课主题 Checkpoint 运行原理图 Checkpoint 源码解析 引言 Checkpoint 到底是什么和需要用 Checkpoint 解决什么问题: Spark 在生产环境下经常会面临 Transformation 的 RDD 非常多(例如一个Job 中包含1万个RDD) 或者是具体的 Transformation 产生的 RDD 本身计算特别复杂和耗时(例如计算时常超过1个小时) , 可能业务比较复杂,此时我们必需考虑对计算结果的持久化. Spark 是擅长多步骤迭代,同时擅长基于

大数据 --> 分布式文件系统HDFS的工作原理

分布式文件系统HDFS的工作原理 Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的机器上.它能提供高吞吐量的数据访问,非常适合大规模数据集上的应用.要理解HDFS的内部工作原理,首先要理解什么是分布式文件系统. 1.分布式文件系统 多台计算机联网协同工作(有时也称为一个集群)就像单台系统一样解决某种问题,这样的系统我们称之为分布式系统. 分布式文件系统是分布式系统的一个子集,它们解决的问题就是数据存储.换句

【转载】Hadoop分布式文件系统HDFS的工作原理详述

转载请注明来自36大数据(36dsj.com):36大数据 » Hadoop分布式文件系统HDFS的工作原理详述 转注:读了这篇文章以后,觉得内容比较易懂,所以分享过来支持一下. Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的 机器上.它能提供高吞吐量的数据访问,非常适合大规模数据集上的应用.要理解HDFS的内部工作原理,首先要理解什么是分布式文件系统. 1.分布式文件系统 多台计算机联网协同工作(有时也

Hadoop伪分布安装详解+MapReduce运行原理+基于MapReduce的KNN算法实现

本篇博客将围绕Hadoop伪分布安装+MapReduce运行原理+基于MapReduce的KNN算法实现这三个方面进行叙述. (一)Hadoop伪分布安装 1.简述Hadoop的安装模式中–伪分布模式与集群模式的区别与联系. Hadoop的安装方式有三种:本地模式,伪分布模式,集群(分布)模式,其中后两种模式为重点,有意义 伪分布:如果Hadoop对应的Java进程都运行在一个物理机器上,称为伪分布 分布:如果Hadoop对应的Java进程运行在多台物理机器上,称为分布.[集群就是有主有从] 伪

HDFS 实验 (一) 原理

原文在此 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html hadoop 两大组件 mapreduce和hdfs 用HDFS的目标 避免硬件故障 硬件故障是常态,而不是例外.一个HDFS实例可能包括数百或数千个服务器,存储文件系统的部分数据.事实上,有大量的组件,每个组件都有一个非平凡的失效概率意味着HDFS的一些组件总是非功能.因此,故障的快速检测,从自动的恢复是HDFS的一个核心构架目标. 流式数据访问 应用程序运行在HDFS需要流