CCF(管道清洁):最小费用最大流

管道清洁

201812-5

  • 需要清洁的管道下界为1,
  • 不需要清洁的管道下界为0,
  • 可重复经过的管道上界为正无穷,
  • 不可重复经过的管道上界为1。
  • 这属于无源无汇的有容量下界的最小费用可行流。解决的方法就是首先增加一个源点和一个汇点,然后对每一条有下限的弧进行改造,改成容量下限为0,上限为c-b的一条弧,再增加两条分别从x点指向源点的上限为b的弧,以及从源点指向y点的上限为b的弧。
  • 最后,只需要求改造后的s-t的最小费用流就行了。但是当且仅当附加弧满载时候原网络有可行流。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include<queue>
using namespace std;
const int N=210;
const int INF=0X3F3F3F3F;
int n,m,e;
int no[N];
int overload;//需要清扫的道路数目
int sum;//根据需要清扫的道路数目可知必须要消耗的包子数目,注意这里仅仅是需要清扫的道路的必须的包子数目,而不是全部的
struct Edge {
    int from, to, cap, flow, cost;
};
struct MCMF {
    int n, m;
    vector<Edge> edges;
    vector<int> G[N];
    int d[N], inq[N], p[N], a[N];

    void init(int n) {
        this->n = n;
        for (int i = 0; i <= n; ++i) G[i].clear();
        edges.clear();
    }

    void AddEdge(int from, int to, int cap, int cost) {
        edges.push_back(Edge{from, to, cap, 0, cost});
        edges.push_back(Edge{to, from, 0, 0, -cost});
        m = edges.size();
        G[from].push_back(m-2); G[to].push_back(m-1);
    }

    bool spfa(int s, int t, int &flow, int &cost) {
        //M(inq, 0); M(d, INF);
        memset(inq,0,sizeof(inq));
        memset(d,INF,sizeof(d));
        d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF;
        queue<int> q;
        q.push(s);
        while (!q.empty()) {
            int x = q.front(); q.pop();
            inq[x] = 0;
            for (int i = 0; i < G[x].size(); ++i) {
                Edge &e = edges[G[x][i]];
                if (d[e.to] > d[x] + e.cost && e.cap > e.flow) {
                    d[e.to] = d[x] + e.cost;
                    p[e.to] = G[x][i];
                    a[e.to] = min(a[x], e.cap-e.flow);
                    if (inq[e.to]) continue;
                    q.push(e.to); inq[e.to] = 1;
                }
            }
        }
        if (d[t] == INF) return false;
        flow += a[t];
        cost += d[t] * a[t];
        int u = t;
        while (u != s) {
            edges[p[u]].flow += a[t];
            edges[p[u]^1].flow -= a[t];
            u = edges[p[u]].from;
        }
        return true;
    }

    int Mincost(int s, int t) {
        int flow = 0, cost = 0;
        while (spfa(s, t, flow, cost));
        if(flow!=overload)
            return -1;
        return cost;
    }

}solver;
int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    int t,s;
    cin>>t>>s>>e;
    while(t--){
        overload=0;
        sum=0;
        int st,ed;
        cin>>n>>m;
        st=0,ed=n+1;
        memset(no,0,sizeof(no));
        solver.init(n+1);
        for(int i=0;i<m;i++){
            int x,y;
            char c;
            cin>>x>>y>>c;
            if(c=='A'){//需要被清理,可以走无数遍,上限为无穷,下限为1
                solver.AddEdge(x,y,INF,e);
                no[x]--;
                no[y]++;
                sum+=e;
            }else if(c=='B'){//需要被清理,只能走一遍,上限为1,下限也为1
                no[x]--;
                no[y]++;
                sum+=e;
            }else if(c=='C'){//不要被清理,可以走无数遍,上限为无穷,下限为0
                solver.AddEdge(x,y,INF,e);
            }else{//不需要被清理,但是只能走一遍,上限为1,下限为0
                solver.AddEdge(x,y,1,e);
            }
        }
        for(int i=1;i<=n;i++){//因为这里的下限刚好是1,所以可以采用++,--的方法来统计一个顶点共有多少次上限-下限
            if(no[i]>0){//后结点
                solver.AddEdge(st,i,no[i],0);//一下两条路属于附加结点,附加边,所以费用是0
                overload+=no[i];
            }else if(no[i]<0){//前结点
                solver.AddEdge(i,ed,-no[i],0);
            }
        }
        cout<<solver.Mincost(st,ed)+sum<<endl;
    }
    //system("pause");
    return 0;
}

原文地址:https://www.cnblogs.com/GarrettWale/p/11441918.html

时间: 2024-11-01 14:56:20

CCF(管道清洁):最小费用最大流的相关文章

最小费用可行流

https://www.cnblogs.com/guapisolo/p/10348428.html  原博 // ccf 201812-5 管道清洁: 最小费用可行流 #include<iostream> #include<queue> #include<string.h> using namespace std; const int maxn = 233; const int inf = 0x3f3f3f3f; struct node{ int u,v,f,w,nxt

【BZOJ3876】【Ahoi2014】支线剧情 有下界的最小费用最大流

#include <stdio.h> int main() { puts("转载请注明出处谢谢"); puts("http://blog.csdn.net/vmurder/article/details/43025375"); } [BZOJ2324]营救皮卡丘 这道题也是一道有下界的最小费用最大流. 我的题解地址:http://blog.csdn.net/vmurder/article/details/41378979 这道题其实就是模板题. 我的处理

POJ 3686.The Windy&#39;s 最小费用最大流

The Windy's Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5477   Accepted: 2285 Description The Windy's is a world famous toy factory that owns M top-class workshop to make toys. This year the manager receives N orders for toys. The ma

P3381 【模板】最小费用最大流

P3381 [模板]最小费用最大流 题目描述 如题,给出一个网络图,以及其源点和汇点,每条边已知其最大流量和单位流量费用,求出其网络最大流和在最大流情况下的最小费用. 输入输出格式 输入格式: 第一行包含四个正整数N.M.S.T,分别表示点的个数.有向边的个数.源点序号.汇点序号. 接下来M行每行包含四个正整数ui.vi.wi.fi,表示第i条有向边从ui出发,到达vi,边权为wi(即该边最大流量为wi),单位流量的费用为fi. 输出格式: 一行,包含两个整数,依次为最大流量和在最大流量情况下的

C++之路进阶——最小费用最大流(支线剧情)

F.A.Qs Home Discuss ProblemSet Status Ranklist Contest ModifyUser  hyxzc Logout 捐赠本站 Notice:由于本OJ建立在Linux平台下,而许多题的数据在Windows下制作,请注意输入.输出语句及数据类型及范围,避免无谓的RE出现. 3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 542  Solved: 332[Submit

hdu 4494 Teamwork 最小费用最大流

Teamwork Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4494 Description Some locations in city A has been destroyed in the fierce battle. So the government decides to send some workers to repair these location

POJ - 2195 Going Home(最小费用最大流)

1.N*M的矩阵中,有k个人和k个房子,每个人分别进入一个房子中,求所有人移动的最小距离. 2.人看成源点,房子看成汇点,求最小费用最大流. 建图-- 人指向房子,容量为1,费用为人到房子的曼哈顿距离. 建立超级源点和超级汇点:超级源点指向人,容量为1,费用为0:超级汇点指向房子,容量为1,费用为0. 求超级源点到超级汇点的最小费用最大流即可. ps:容量为什么都设为1?---有待研究.. 3. 1.Bellman-Ford: #include<iostream> #include<st

hdu 1853 Cyclic Tour 最小费用最大流

题意:一个有向图,现在问将图中的每一个点都划分到一个环中的最少代价(边权和). 思路:拆点,建二分图,跑最小费用最大流即可.若最大流为n,则说明是最大匹配为n,所有点都参与,每个点的入度和出度又是1,所以就是环. /********************************************************* file name: hdu1853.cpp author : kereo create time: 2015年02月16日 星期一 17时38分51秒 *******

最小费用最大流

Farm Tour http://poj.org/problem?id=2135 建图再说吧 1 #include<cstdio> 2 #include<cstring> 3 #include<cstdlib> 4 #include<cmath> 5 #include<map> 6 #include<stack> 7 #include<queue> 8 #include<vector> 9 #include&l