[TJOI2019]唱,跳,rap,篮球(生成函数,组合数学,NTT)

算是补了个万年大坑了吧。

根据 wwj 的题解(最准确),设一个方案 \(S\)(不一定合法)的鸡你太美组数为 \(w(S)\)。

答案就是 \(\sum\limits_{S}[w(S)=0]\)。

用二项式定理:\(\sum\limits_{S}[w(S)=0]=\sum\limits_{S}(1-1)^{w(S)}=\sum\limits_{S}\sum\limits_{i\ge 0}(-1)^i\binom{w(S)}{i}=\sum\limits_{i\ge 0}(-1)^i\sum\limits_{S}\binom{w(S)}{i}\)。

后面那个求和号,就是求对于所有方案,从鸡你太美组数中选出 \(i\) 组的方案数之和。

枚举被选出的组的位置,这里一共有 \(\binom{n-3i}{i}\) 种方案。(捆绑,一共有 \(n-3i\) 个人,其中 \(i\) 个人是鸡你太美)

剩下的排列方案,枚举每种爱好的人分别有多少个,\(\sum\limits_{w\le a-i}\sum\limits_{x\le b-i}\sum\limits_{y\le c-i}\sum\limits_{z\le d-i}[w+x+y+z=n-4i]\frac{(n-4i)!}{w!x!y!z!}\)。

明显是个卷积,对每个 \(i\) 做一遍 NTT 就好了。

时间复杂度 \(O(n^2\log n)\)。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=2222,mod=998244353;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline ll read(){
    char ch=getchar();ll x=0,f=0;
    while(ch<'0' || ch>'9') f|=ch=='-',ch=getchar();
    while(ch>='0' && ch<='9') x=x*10+ch-'0',ch=getchar();
    return f?-x:x;
}
int n,a,b,c,d,fac[maxn],invfac[maxn],A[maxn],B[maxn],C[maxn],D[maxn],F[maxn],lim,l,rev[maxn],ans;
int qpow(int a,int b){
    int ans=1;
    for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) ans=1ll*ans*a%mod;
    return ans;
}
void init(int upr){
    for(lim=1,l=0;lim<upr;lim<<=1,l++);
    FOR(i,0,lim-1) rev[i]=(rev[i>>1]>>1)|((i&1)<<(l-1));
}
void NTT(int *A,int tp){
    FOR(i,0,lim-1) if(i<rev[i]) swap(A[i],A[rev[i]]);
    for(int i=1;i<lim;i<<=1)
        for(int j=0,Wn=qpow(3,mod-1+tp*(mod-1)/(i<<1));j<lim;j+=i<<1)
            for(int k=0,w=1;k<i;k++,w=1ll*w*Wn%mod){
                int x=A[j+k],y=1ll*A[i+j+k]*w%mod;
                A[j+k]=(x+y)%mod;
                A[i+j+k]=(x-y+mod)%mod;
            }
    if(tp==-1){
        int linv=qpow(lim,mod-2);
        FOR(i,0,lim-1) A[i]=1ll*A[i]*linv%mod;
    }
}
int calc(int x){
    init(a+b+c+d-4*x);
    FOR(i,0,lim-1) A[i]=B[i]=C[i]=D[i]=0;
    FOR(i,0,a-x) A[i]=invfac[i];
    FOR(i,0,b-x) B[i]=invfac[i];
    FOR(i,0,c-x) C[i]=invfac[i];
    FOR(i,0,d-x) D[i]=invfac[i];
    NTT(A,1);NTT(B,1);NTT(C,1);NTT(D,1);
    FOR(i,0,lim-1) F[i]=1ll*A[i]*B[i]%mod*C[i]%mod*D[i]%mod;
    NTT(F,-1);
//  printf("calc(%d),f=%d,fac=%d\n",x,F[n-4*x],fac[n-4*x]);
    return 1ll*fac[n-4*x]*F[n-4*x]%mod;
}
int CCC(int n,int m){
    return 1ll*fac[n]*invfac[m]%mod*invfac[n-m]%mod;
}
int main(){
    n=read();a=read();b=read();c=read();d=read();
    fac[0]=1;
    FOR(i,1,n) fac[i]=1ll*fac[i-1]*i%mod;
    invfac[n]=qpow(fac[n],mod-2);
    ROF(i,n-1,0) invfac[i]=1ll*invfac[i+1]*(i+1)%mod;
    FOR(i,0,min(n/4,min(a,min(b,min(c,d))))){
        int s=1ll*CCC(n-3*i,i)*calc(i)%mod;
//      printf("s=%d\n",s);
        if(i%2==0) ans=(ans+s)%mod;
        else ans=(ans-s+mod)%mod;
    }
    printf("%d\n",ans);
}

原文地址:https://www.cnblogs.com/1000Suns/p/11518645.html

时间: 2024-11-09 06:56:42

[TJOI2019]唱,跳,rap,篮球(生成函数,组合数学,NTT)的相关文章

[TJOI2019]唱、跳、rap和篮球——NTT+生成函数+容斥

题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(-1)^i\ ans_{i}$ 那么现在只需要考虑至少有$i$个聚集区间的方案数,我们枚举这$i$个区间的起始点位置,一共有$C_{n-3i}^{i}$种方案(可以看作是刚开始先将每个区间后三个位置去掉,从剩下$n-3i$个位置中选出$i$个区间起点,然后再在每个起点后面加上三个位置). 那么剩下的$

[luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)

[luogu5339] [TJOI2019]唱.跳.rap和篮球(容斥原理+组合数学)(不用NTT) 题面 略 分析 首先考虑容斥,求出有i堆人讨论的方案. 可以用捆绑法,把每堆4个人捆绑成一组,其他人每个人一组.这样一共有\(n-3i\)组(这些组可以被看成相同的点). 我们从中选出n-4i个点,这些点展开成1个人,其他\(i\)个点展开成4个人.那么方案数就是\(C_{n-3i}^{n-4i}\) 由于\(i\)堆人的喜好已经确定,最终答案为\(\sum_{i=0}^n (-1)^i \ti

[TJOI2019]唱、跳、rap和篮球——容斥原理+生成函数

先附一组sd图 然后放上原题链接 注意,队伍不同指的是喜好不同,不是人不同 先想到\(DP\),然后你会发现并没有什么优秀的状态设计,然后我们考虑容斥 设\(lim\)表示选的癌坤组数的上限,\(f_i\)为先选出来\(i\)组剩下随便排的方案数,那么答案就是 \[\sum\limits_{i=0}^{lim}(-1)^i\times\ f_i\] 于是问题转化为了求\(f_i\).显然\(f_i\)可以表示为一个组合数再乘一个东西,具体来说组合数代表在\(n\)个同学中选\(i\)组癌坤的方案

[TJOI2019]唱、跳、rap和篮球

题目 套路题啊 发现正向计数不太好记,考虑容斥 考虑求至少有\(i\)段连续四个位置是不合法的,容斥系数显然是\((-1)^i\) 我们先选出这样的\(i\)段长度为\(4\)的区间来 我们考虑分配一下空格,问题就等价于把\(n-4i\)个空格分到\(i+1\)组里,插板一下就能知道答案是\(\binom{n-3i}{i}\) 考虑剩下的\(n-4i\)个空格,我们现在需要把这些空格填满 先来考虑一下这四种分别填了\(a,b,c,d\)个方案数是多少 这\(n-4i\)个位置直接去排列,是\((

【题解】Luogu P5339 [TJOI2019]唱、跳、rap和篮球

原题传送门 这题zsy写的是\(O(n^2)\),还有NTT\(O(n^2\log n)\)的做法.我的是暴力,\(O(\frac{a b n}{4})\),足够通过 考虑设\(f(i)\)表示序列中至少有\(i\)组人讨论cxk的方案数 这样就珂以进行容斥,易知答案ans为: \[ans=\sum_{i=0}^{Min(n/4,a,b,c,d)} (-1)^i f(i)\] 我们考虑如何计算\(f(i)\) 如果视讨论cxk的组为一个元素,则一共有\(n-3*i\)个元素 我们把问题转换成一个

Luogu P5339 [TJOI2019]唱、跳、rap和篮球

题目 设\(f_i\)表示从\((a-4i,b-4i,c-4i,d-4i)\)中选\(n-4i\)个排队的方案数. 那么我们可以容斥,答案为\(\sum\limits_{i=0}^{lim}(-1)^i{n-3i\choose i}f_i\). 考虑一下这个\(f\),它就是四个指数型生成函数卷起来\((\sum\limits_{i=0}^a\frac{x^i}{i!})(\sum\limits_{i=0}^b\frac{x^i}{i!})(\sum\limits_{i=0}^c\frac{x^

bzoj 3027: [Ceoi2004]Sweet【生成函数+组合数学】

首先根据生成函数的套路,这个可以写成: \[ \prod_{i=1}^{n}(1+x^1+x^2+...+x^{c[i]}) \] 然后化简 \[ =\prod_{i=1}^{n}\frac{1-x^{c[i]+1}}{1-x} \] \[ =\prod_{i=1}^{n}\frac{1}{1-x}*(1-x^{c[i]+1}) \] \[ =(1+x^1+x^2+...)^n*\prod_{i=1}^{n}(1-x^{c[i]+1}) \] 位数过多所以只考虑有常数项的位,后面那个式子可以df

[生成函数][DFT][NTT] Hdu P6067 Big Integer

题解 代码 1 #include <cstdio> 2 #include <istream> 3 #define ll long long 4 using namespace std; 5 const ll N=200010,mo=786433; 6 int T,n,m,k,x,y,sum,num[N],f[N],len,L,rev[N],v[10][N]; 7 ll a[10][N],inv[mo],fac[N],ny[N],ans[N],p[N],P[N]; 8 char s[

js:面向对象,Document对象:查找元素对象,修改元素,事件

面向对象编程 面向对象的编程,那么是更符合人类所接触的世界的逻辑思维. 将一个系统划分为各个子系统,子系统又由各个模块构成,将每个模块,系统划分为一个个对象,给这些对象赋予某些角色(属性/功能/方法). 伪面向对象编程语言 ---> 面向对象编程语言 1.创建对象的方式 (1) 字面量的方式 //字面量的形式 var student = { name:"蔡徐坤", type:"练习生", like:"唱跳rap篮球", rap:functi