这道题神啊.
看了一下午没有思路,感觉是二分图没有深刻理解,又重新看了一遍蓝书上的二分图,还打了道题练手,然而还是没有想出这道题......
于是恰饭回来决定看下题解,恍然大悟.
同志们可以把每一个点看做一条匹配边,把它的的行数和列数连一条边,会发现整幅图是一组匹配.
在交换行和列的时候,相当于在匈牙利算法中进行协商的过程,所以对最大匹配不变.
如果交换后可以有n个及以上的匹配,就说明一定可以实现题意.
配图如下(图里的字体有点小请见谅):
然后就是跑一个裸的匈牙利,求出匹配个数就可以了.
代码:
#pragma GCC diagnostic error "-std=c++11"
#pragma GCC target("sse2")
#pragma GCC optimize(3)
#pragma GCC target("avx")
#pragma GCC optimize("Ofast")
#pragma GCC optimize("inline")
#pragma GCC optimize("-fgcse")
#pragma GCC optimize("-fgcse-lm")
#pragma GCC optimize("-fipa-sra")
#pragma GCC optimize("-ftree-pre")
#pragma GCC optimize("-ftree-vrp")
#pragma GCC optimize("-fpeephole2")
#pragma GCC optimize("-ffast-math")
#pragma GCC optimize("-fsched-spec")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("-falign-jumps")
#pragma GCC optimize("-falign-loops")
#pragma GCC optimize("-falign-labels")
#pragma GCC optimize("-fdevirtualize")
#pragma GCC optimize("-fcaller-saves")
#pragma GCC optimize("-fcrossjumping")
#pragma GCC optimize("-fthread-jumps")
#pragma GCC optimize("-funroll-loops")
#pragma GCC optimize("-fwhole-program")
#pragma GCC optimize("-freorder-blocks")
#pragma GCC optimize("-fschedule-insns")
#pragma GCC optimize("inline-functions")
#pragma GCC optimize("-ftree-tail-merge")
#pragma GCC optimize("-fschedule-insns2")
#pragma GCC optimize("-fstrict-aliasing")
#pragma GCC optimize("-fstrict-overflow")
#pragma GCC optimize("-falign-functions")
#pragma GCC optimize("-fcse-skip-blocks")
#pragma GCC optimize("-fcse-follow-jumps")
#pragma GCC optimize("-fsched-interblock")
#pragma GCC optimize("-fpartial-inlining")
#pragma GCC optimize("no-stack-protector")
#pragma GCC optimize("-freorder-functions")
#pragma GCC optimize("-findirect-inlining")
#pragma GCC optimize("-fhoist-adjacent-loads")
#pragma GCC optimize("-frerun-cse-after-loop")
#pragma GCC optimize("inline-small-functions")
#pragma GCC optimize("-finline-small-functions")
#pragma GCC optimize("-ftree-switch-conversion")
#pragma GCC optimize("-foptimize-sibling-calls")
#pragma GCC optimize("-fexpensive-optimizations")
#pragma GCC optimize("-funsafe-loop-optimizations")
#pragma GCC optimize("inline-functions-called-once")
#pragma GCC optimize("-fdelete-null-pointer-checks")
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
struct edge
{
int to,next;
}e[1000010];
int t,n,size,CommunismParty_cnt;
int head[1000010],match[1000010];
bool flag[1000010];
inline void EdgeAdd(int,int);
inline void Hungary();
inline bool find(int);
int main()
{
scanf("%d",&t);
for(int _=1;_<=t;_++)
{
scanf("%d",&n);
CommunismParty_cnt=0;
size=0;
memset(head,-1,sizeof(head));
memset(match,0,sizeof(match));
memset(e,0,sizeof(e));
for(int __=1;__<=n;__++)
{
for(int ___=1;___<=n;___++)
{
int CommunistYouthLeague_color;
scanf("%d",&CommunistYouthLeague_color);
if(CommunistYouthLeague_color==1)
{
EdgeAdd(__,___);
}
}
}
Hungary();
printf("%s\n",CommunismParty_cnt>=n?"Yes":"No");
}
return 0;
}
inline void EdgeAdd(int from,int to)
{
e[++size].to=to;
e[size].next=head[from];
head[from]=size;
}
inline void Hungary()
{
for(int _=1;_<=n;_++)
{
memset(flag,false,sizeof(flag));
if(find(_)==true)
{
CommunismParty_cnt++;
}
}
}
inline bool find(int from)
{
for(int _=head[from];_!=-1;_=e[_].next)
{
int to=e[_].to;
if(flag[to]==false)
{
flag[to]=true;
if(match[to]==0||find(match[to])==true)
{
match[to]=from;
return true;
}
}
}
return false;
}
原文地址:https://www.cnblogs.com/Lemir3/p/11104604.html
时间: 2024-10-14 09:46:56