Hadoop之HDFS(DataNode) (面试开发重点)

1 DataNode工作机制

DataNode工作机制,如图所示。

1)一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。

2)DataNode启动后向NameNode注册,通过后,周期性(1小时)的向NameNode上报所有的块信息。

3)心跳是每3秒一次,心跳返回结果带有NameNode给该DataNode的命令如复制块数据到另一台机器,或删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用。

4)集群运行中可以安全加入和退出一些机器。

2 数据完整性

思考:如果电脑磁盘里面存储的数据是控制高铁信号灯的红灯信号(1)和绿灯信号(0),但是存储该数据的磁盘坏了,一直显示是绿灯,是否很危险?同理DataNode节点上的数据损坏了,却没有发现,是否也很危险,那么如何解决呢?

如下是DataNode节点保证数据完整性的方法。

1)当DataNode读取Block的时候,它会计算CheckSum。

2)如果计算后的CheckSum,与Block创建时值不一样,说明Block已经损坏。

3)Client读取其他DataNode上的Block。

4)DataNode在其文件创建后周期验证CheckSum,如图所示。

3 掉线时限参数设置

需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒。

<property>

<name>dfs.namenode.heartbeat.recheck-interval</name>

<value>300000</value>

</property>

<property>

<name>dfs.heartbeat.interval</name>

<value>3</value>

</property>

4 服役新数据节点

0.  需求

随着公司业务的增长,数据量越来越大,原有的数据节点的容量已经不能满足存储数据的需求,需要在原有集群基础上动态添加新的数据节点。

1. 环境准备

(1)在hadoop104主机上再克隆一台hadoop105主机

(2)修改IP地址和主机名称

(3)删除原来HDFS文件系统留存的文件/opt/module/hadoop-2.7.2/datalog

(4)source一下配置文件

[[email protected] hadoop-2.7.2]$ source /etc/profile

2. 服役新节点具体步骤

(1)直接启动DataNode,即可关联到集群

[[email protected] hadoop-2.7.2]$ sbin/hadoop-daemon.sh start datanode

[[email protected] hadoop-2.7.2]$ sbin/yarn-daemon.sh start nodemanager

(2)在hadoop105上上传文件

[[email protected] hadoop-2.7.2]$ hadoop fs -put /opt/module/hadoop-2.7.2/LICENSE.txt /

(3)如果数据不均衡,可以用命令实现集群的再平衡

[[email protected] sbin]$ ./start-balancer.sh

starting balancer, logging to /opt/module/hadoop-2.7.2/logs/hadoop-atguigu-balancer-hadoop102.out

Time Stamp               Iteration#  Bytes Already Moved  Bytes Left To Move  Bytes Being Moved

5 退役旧数据节点

5.1 添加白名单

添加到白名单的主机节点,都允许访问NameNode,不在白名单的主机节点,都会被退出。

配置白名单的具体步骤如下:

(1)在NameNode的/opt/module/hadoop-2.7.2/etc/hadoop目录下创建dfs.hosts文件

[[email protected] hadoop]$ pwd

/opt/module/hadoop-2.7.2/etc/hadoop

[[email protected] hadoop]$ touch dfs.hosts

[[email protected] hadoop]$ vi dfs.hosts

添加如下主机名称(不添加hadoop105)

hadoop102

hadoop103

hadoop104

(2)在NameNode的hdfs-site.xml配置文件中增加dfs.hosts属性

<property>

<name>dfs.hosts</name>

<value>/opt/module/hadoop-2.7.2/etc/hadoop/dfs.hosts</value>

</property>

(3)配置文件分发

[[email protected] hadoop]$ xsync hdfs-site.xml

(4)刷新NameNode

[[email protected] hadoop-2.7.2]$ hdfs dfsadmin -refreshNodes

Refresh nodes successful

(5)更新ResourceManager节点

[[email protected] hadoop-2.7.2]$ yarn rmadmin -refreshNodes

17/06/24 14:17:11 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.1.103:8033

(6)在web浏览器上查看

4. 如果数据不均衡,可以用命令实现集群的再平衡

[[email protected] sbin]$ ./start-balancer.sh

starting balancer, logging to /opt/module/hadoop-2.7.2/logs/hadoop-atguigu-balancer-hadoop102.out

Time Stamp               Iteration#  Bytes Already Moved  Bytes Left To Move  Bytes Being Moved

5.2 黑名单退役

在黑名单上面的主机都会被强制退出。

1.在NameNode的/opt/module/hadoop-2.7.2/etc/hadoop目录下创建dfs.hosts.exclude文件

[[email protected] hadoop]$ pwd

/opt/module/hadoop-2.7.2/etc/hadoop

[[email protected] hadoop]$ touch dfs.hosts.exclude

[[email protected] hadoop]$ vi dfs.hosts.exclude

添加如下主机名称(要退役的节点)

hadoop105

2.在NameNode的hdfs-site.xml配置文件中增加dfs.hosts.exclude属性

<property>

<name>dfs.hosts.exclude</name>

<value>/opt/module/hadoop-2.7.2/etc/hadoop/dfs.hosts.exclude</value>

</property>

3.刷新NameNode、刷新ResourceManager

[[email protected] hadoop-2.7.2]$ hdfs dfsadmin -refreshNodes

Refresh nodes successful

[[email protected] hadoop-2.7.2]$ yarn rmadmin -refreshNodes

17/06/24 14:55:56 INFO client.RMProxy: Connecting to ResourceManager at hadoop103/192.168.1.103:8033

4. 检查Web浏览器,退役节点的状态为decommission in progress(退役中),说明数据节点正在复制块到其他节点,如图所示

5.等待退役节点状态为decommissioned(所有块已经复制完成),停止该节点及节点资源管理器。注意:如果副本数是3,服役的节点小于等于3,是不能退役成功的,需要修改副本数后才能退役,如图所示

[[email protected] hadoop-2.7.2]$ sbin/hadoop-daemon.sh stop datanode

stopping datanode

[[email protected] hadoop-2.7.2]$ sbin/yarn-daemon.sh stop nodemanager

stopping nodemanager

6. 如果数据不均衡,可以用命令实现集群的再平衡

[[email protected] hadoop-2.7.2]$ sbin/start-balancer.sh

starting balancer, logging to /opt/module/hadoop-2.7.2/logs/hadoop-atguigu-balancer-hadoop102.out

Time Stamp               Iteration#  Bytes Already Moved  Bytes Left To Move  Bytes Being Moved

注意:不允许白名单和黑名单中同时出现同一个主机名称。

6 Datanode多目录配置

1. DataNode也可以配置成多个目录,每个目录存储的数据不一样。即:数据不是副本

2.具体配置如下

hdfs-site.xml

<property>

<name>dfs.datanode.data.dir</name>

<value>file:///${hadoop.tmp.dir}/dfs/data1,file:///${hadoop.tmp.dir}/dfs/data2</value>

</property>

原文地址:https://www.cnblogs.com/Diyo/p/11355700.html

时间: 2024-10-06 17:28:41

Hadoop之HDFS(DataNode) (面试开发重点)的相关文章

Hadoop之HDFS(NameNode和SecondaryNameNode)(面试开发重点)

NameNode和SecondaryNameNode(面试开发重点) 1 NN和2NN工作机制 思考:NameNode中的元数据是存储在哪里的? 首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低.因此,元数据需要存放在内存中.但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了.因此产生在磁盘中备份元数据的FsImage. 这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,

大数据技术之_04_Hadoop学习_01_HDFS_HDFS概述+HDFS的Shell操作(开发重点)+HDFS客户端操作(开发重点)+HDFS的数据流(面试重点)+NameNode和SecondaryNameNode(面试开发重点)

第1章 HDFS概述1.1 HDFS产出背景及定义1.2 HDFS优缺点1.3 HDFS组成架构1.4 HDFS文件块大小(面试重点)第2章 HDFS的Shell操作(开发重点)第3章 HDFS客户端操作(开发重点)3.1 HDFS客户端环境准备3.2 HDFS的API操作3.2.1 HDFS文件上传(测试参数优先级)3.2.2 HDFS文件下载3.2.3 HDFS文件夹删除3.2.4 HDFS文件名更改3.2.5 HDFS文件详情查看3.2.6 HDFS文件和文件夹判断3.3 HDFS的I/O

大数据技术之_04_Hadoop学习_02_HDFS_DataNode(面试开发重点)+HDFS 2.X新特性

第6章 DataNode(面试开发重点)6.1 DataNode工作机制6.2 数据完整性6.3 掉线时限参数设置6.4 服役新数据节点6.5 退役旧数据节点6.5.1 添加白名单6.5.2 黑名单退役6.6 Datanode多目录配置第7章 HDFS 2.X新特性7.1 集群间数据拷贝7.2 小文件存档7.3 回收站7.4 快照管理 第6章 DataNode(面试开发重点) 6.1 DataNode工作机制 DataNode工作机制,如下图所示. 1)一个数据块在DataNode上以文件形式存

Hadoop之HDFS(HDFS的数据流读写数据) (面试开发重点)

1 HDFS写数据流程 1.1 剖析文件写入 HDFS写数据流程,如图所示 1)客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在. 2)NameNode返回是否可以上传. 3)客户端请求第一个 Block上传到哪几个DataNode服务器上. 4)NameNode返回3个DataNode节点,分别为dn1.dn2.dn3. 5)客户端通过FSDataOutputStream模块请求dn1上传数据,dn

大数据技术之Hadoop(HDFS)

第1章 HDFS概述 1.1 HDFS产出背景及定义 1.2 HDFS优缺点 1.3 HDFS组成架构 1.4 HDFS文件块大小(面试重点) 第2章 HDFS的Shell操作(开发重点) 1.基本语法 bin/hadoop fs 具体命令 OR bin/hdfs dfs 具体命令 dfs是fs的实现类. 2.命令大全 [[email protected] hadoop-2.7.2]$ bin/hadoop fs ? [-appendToFile <localsrc> ... <dst&

大数据技术之_03_Hadoop学习_02_入门_Hadoop运行模式+【本地运行模式+伪分布式运行模式+完全分布式运行模式(开发重点)】+Hadoop编译源码(面试重点)+常见错误及解决方案

第4章 Hadoop运行模式4.1 本地运行模式4.1.1 官方Grep案例4.1.2 官方WordCount案例4.2 伪分布式运行模式4.2.1 启动HDFS并运行MapReduce程序4.2.2 启动YARN并运行MapReduce程序4.2.3 配置历史服务器4.2.4 配置日志的聚集4.2.5 配置文件说明4.3 完全分布式运行模式(开发重点)4.3.1 虚拟机准备4.3.2 编写集群分发脚本xsync4.3.3 集群配置4.3.4 集群单点启动4.3.5 SSH无密登录配置4.3.6

Hadoop学习笔记_7_分布式文件系统HDFS --DataNode体系结构

分布式文件系统HDFS --DataNode体系结构 1.概述 DataNode作用:提供真实文件数据的存储服务. 文件块(block):最基本的存储单位[沿用的Linux操作系统地概念].对于文件内容而言,一个文件的长度大小是size,那么从文件的0偏移开始,按照固定的大小,顺序对文件进行划分并编号,划分好的每一个块称一个Block. 与Linux操作系统不同的是,一旦上传了一个小于Block大小的文件,则该文件会占用实际文件大小的空间. 2.进入hdfs-default.xml <prope

浅谈Hadoop下HDFS文件系统

Hadoop下HDFS文件系统 在这里我们对Hadoop的基本概念,历史功能就不做过多的阐述,重点在对于他的文件系统做一些了解和阐述. HDFS(Hadoop distributed file system)是一个分布式文件系统.具有高容错性(fault-tolerant),使得他能够部署在低廉的硬件上.他可以提供高吞吐率来访问应用程序的数据.HDFS放宽了可移植操作系统接口的要求.这样就可以实现以流式的形式来访问文件系统的数据. HDFS的设计目标: 检测和快速回复硬件故障 流式的数据访问 简

介绍hadoop中的hadoop和hdfs命令

有些hive安装文档提到了hdfs dfs -mkdir ,也就是说hdfs也是可以用的,但在2.8.0中已经不那么处理了,之所以还可以使用,是为了向下兼容. 本文简要介绍一下有关的命令,以便对hadoop的命令有一个大概的影响,并在想使用的时候能够知道从哪里可以获得帮助. 概述 在$HADOOP_HOME/bin下可以看到hadoop和hdfs的脚本. hdfs的相当一部分的功能可以使用hdoop来替代(目前),但hdfs有自己的一些独有的功能.hadoop主要面向更广泛复杂的功能. 本文介绍