Focal Loss解读

Focal Loss解读的相关文章

focal loss for multi-class classification

转自:https://blog.csdn.net/Umi_you/article/details/80982190 Focal loss 出自何恺明团队Focal Loss for Dense Object Detection一文,用于解决分类问题中数据类别不平衡以及判别难易程度差别的问题.文章中因用于目标检测区分前景和背景的二分类问题,公式以二分类问题为例.项目需要,解决Focal loss在多分类上的实现,用此博客以记录过程中的疑惑.细节和个人理解,Keras实现代码链接放在最后. 框架:K

Focal Loss for Dense Object Detection 论文阅读

何凯明大佬 ICCV 2017 best student paper 作者提出focal loss的出发点也是希望one-stage detector可以达到two-stage detector的准确率,同时不影响原有的速度.one-stage detector的准确率不如two-stage detector的原因,作者认为原因是:样本的类别不均衡导致的.因此针对类别不均衡问题,作者提出一种新的损失函数:focal loss,这个损失函数是在标准交叉熵损失基础上修改得到的.这个函数可以通过减少易

Focal Loss 的理解

论文:<Focal Loss for Dense Object Detection> Focal Loss 是何恺明设计的为了解决one-stage目标检测在训练阶段前景类和背景类极度不均衡(如1:1000)的场景的损失函数.它是由二分类交叉熵改造而来的. 标准交叉熵 其中,p是模型预测属于类别y=1的概率.为了方便标记,定义: 交叉熵CE重写为: α-平衡交叉熵: 有一种解决类别不平衡的方法是引入一个值介于[0; 1]之间的权重因子α:当y=1时,取α; 当y=0时,取1-α. 这种方法,当

Focal Loss

转自:https://blog.csdn.net/u014380165/article/details/77019084 论文:Focal Loss for Dense Object Detection 论文链接:https://arxiv.org/abs/1708.02002 优化版的MXNet实现:https://github.com/miraclewkf/FocalLoss-MXNet RBG和Kaiming大神的新作. 我们知道object detection的算法主要可以分为两大类:t

Focal Loss for Dense Object Detection(RetinaNet)

Focal Loss for Dense Object Detection ICCV2017 RBG和Kaiming大神的新作. 论文目标 我们知道object detection的算法主要可以分为两大类:two-stage detector和one-stage detector.前者是指类似Faster RCNN,RFCN这样需要region proposal的检测算法,这类算法可以达到很高的准确率,但是速度较慢.虽然可以通过减少proposal的数量或降低输入图像的分辨率等方式达到提速,但是

[论文理解]Focal Loss for Dense Object Detection(Retina Net)

Focal Loss for Dense Object Detection Intro 这又是一篇与何凯明大神有关的作品,文章主要解决了one-stage网络识别率普遍低于two-stage网络的问题,其指出其根本原因是样本类别不均衡导致,一针见血,通过改变传统的loss(CE)变为focal loss,瞬间提升了one-stage网络的准确率.与此同时,为了测试该loss对网络改进的影响,文章还特地设计了一个网络,retina net,证明了其想法. Problems 为啥one-stage网

处理样本不平衡的LOSS—Focal Loss

0 前言 Focal Loss是为了处理样本不平衡问题而提出的,经时间验证,在多种任务上,效果还是不错的.在理解Focal Loss前,需要先深刻理一下交叉熵损失,和带权重的交叉熵损失.然后我们从样本权利的角度出发,理解Focal Loss是如何分配样本权重的.Focal是动词Focus的形容词形式,那么它究竟Focus在什么地方呢?详细的代码请看Gitee. 1 交叉熵 1.1 交叉熵损失(Cross Entropy Loss) 有\(N\)个样本,输入一个\(C\)分类器,得到的输出为\(X

CVPR2019论文解读:单眼提升2D检测到6D姿势和度量形状

CVPR2019论文解读:单眼提升2D检测到6D姿势和度量形状 ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape 论文链接地址:https://arxiv.org/pdf/1812.02781.pdf 摘要内容: 本文提供了基于端到端单目3D目标检测和度量形状检索的深度学习方法.为了在3D中提升2D检测,定位,以及缩放,提出了一种新的loss函数.不同于各自独立的优化这些数量,3D示例允许适当的度量box

Focal Loss2

Introduction 此篇论文获得了ICCV最佳学生论文奖,指导人是FAIR的He Kaiming大神: 众所周知,detector主要分为以下两大门派: - one stage系 two stage系 代表性算法 YOLOv1.SSD.YOLOv2.YOLOv3 R-CNN.SPPNet.Fast R-CNN.Faster R-CNN 检测精度 低 高 检测速度 快 慢 这种鱼(speed)与熊掌(accuracy)不可兼得的局面一直成为Detection的瓶颈. 究其原因,就是因为one