python 并发编程 多进程 目录

python 并发编程 多进程 目录的相关文章

python并发编程:多进程-队列

队列介绍 进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的 创建队列的类(底层就是以管道和锁定的方式实现) Queue(maxsize):创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递 参数介绍 maxsize是队列中允许最大项数,省略则无大小限制 但需要明确: 1.队列内存放的是消息而非大数据 2.队列占用的是内存空间,因而maxsize即便是无大小限制也受限

python并发编程02/多进程

目录 python并发编程02/多进程 1.进程创建的两种方式 1.1开启进程的第一种方式 1.2开启进程的第二种方式 1.3简单应用 2.进程pid 2.1命令行获取所有的进程的pid tasklist 2.2代码级别如何获取一个进程的pid 2.3获取父进程(主进程)的pid 3.验证进程之间的空间隔离 4.进程对象join方法 5.进程对象其他属性 6.守护进程 python并发编程02/多进程 1.进程创建的两种方式 1.1开启进程的第一种方式 from multiProcessing

Python 3 并发编程多进程之队列(推荐使用)

Python 3 并发编程多进程之队列(推荐使用) 进程彼此之间互相隔离,要实现进程间通信(IPC),multiprocessing模块支持两种形式:队列和管道,这两种方式都是使用消息传递的. 可以往队列里放任意类型的数据 创建队列的类(底层就是以管道和锁定的方式实现): 1 Queue([maxsize]):创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递. 参数介绍: 1 maxsize是队列中允许最大项数,省略则无大小限制. 方法介绍: 1.主要

Python 3 并发编程多进程之进程同步(锁)

Python 3 并发编程多进程之进程同步(锁) 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,竞争带来的结果就是错乱,如何控制,就是加锁处理. 1.多个进程共享同一打印终端 from multiprocessing import Process import os,time def work(): print('%s is running' %os.getpid()) time.sleep(2) print('%s is done' %os.g

python并发编程之多进程

python并发编程之多进程 一.什么是进程 进程:正在进行的一个过程或者一个任务,执行任务的是CPU. 原理:单核加多道技术 二.进程与程序的区别 进程是指程序的运行过程 需要强调的是:同一个程序执行两次是两个进程,比如打开暴风影音,虽然都是同一个软件,但是一个可以播放苍井空,另一个可以播放武藤兰. 三.并发与并行 无论是并行还是并发,在用户看来都是'同时'运行的,不管是进程还是线程,都只是一个任务而已,真是干活的是cpu,cpu来做这些任务,而一个cpu同一时刻只能执行一个任务. (1)并发

python-学习-python并发编程之多进程与多线程

一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.Python提供了multiprocessing.    multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似.  multiprocessing模块的功能众多:支持子进程.通信和共享数据.执行不同形式的同步,

进程,操作系统,Python并发编程之多进程

1.进程基础知识 1.程序:若干文件 2.进程:一个正在执行的文件,程序 3.进程被谁执行:cpu最终运行指定的程序 4.操作系统调度作用:将磁盘上的程序加载到内存,然后交由CPU去处理,一个CPU正在运行的一个程序,就叫开启了一个进程 2.操作系统 1.操作系统:存在于硬盘与软件之间,管理.协调.控制软件与硬件的交互 2.操作系统的作用:将一些复杂的硬件封装成简单的借口,便于使用;合理地调度分配多个进程与cpu的关系,让其有序化 3.操作系统发展史 ①第一代电子计算机(1940-1955) 二

python 并发编程 协程 目录

python 并发编程 协程 协程介绍 python 并发编程 协程 greenlet模块 原文地址:https://www.cnblogs.com/mingerlcm/p/11148935.html

Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池

目录 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 2.死锁现象与递归锁 2.1死锁现象 2.2递归锁 3.信号量 4.GIL全局解释器锁 4.1背景 4.2为什么加锁 5.GIL与Lock锁的区别 6.验证计算密集型IO密集型的效率 6.1 IO密集型 6.2 计算密集型 7.多线程实现socket通信 7.1服务端 7.2客户端 8.进程池,线程池 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 #生产者消