HDU 4932 Bestcoder
Problem Description
There are N point on X-axis . Miaomiao would like to cover them ALL by using segments with same length.
There are 2
limits:
1.A point is convered if there is a segments T , the point is the
left end or the right end of T.
2.The length of the intersection of any two
segments equals zero.
For example , point 2 is convered by [2 , 4] and
not convered by [1 , 3]. [1 , 2] and [2 , 3] are legal segments , [1 , 2] and [3
, 4] are legal segments , but [1 , 3] and [2 , 4] are not (the length of
intersection doesn‘t equals zero), [1 , 3] and [3 , 4] are not(not the same
length).
Miaomiao wants to maximum the length of segements , please tell
her the maximum length of segments.
For your information , the point
can‘t coincidently at the same position.
Input
There are several test cases.
There is a number T (
T <= 50 ) on the first line which shows the number of test cases.
For each
test cases , there is a number N ( 3 <= N <= 50 ) on the first line.
On
the second line , there are N integers Ai (-1e9 <= Ai <= 1e9) shows the
position of each point.
Output
For each test cases , output a real number shows the answser. Please output three digit after the decimal point.
Sample Input
3
3
1 2 3
3
1 2 4
4
1 9 100 10
Sample Output
1.000
2.000
8.000
Hint
For the first sample , a legal answer is [1,2] [2,3] so the length is 1. For the second sample , a legal answer is [-1,1] [2,4] so the answer is 2. For the thired sample , a legal answer is [-7,1] , [1,9] , [10,18] , [100,108] so the answer is 8.
1 #include <stdio.h> 2 #include <string.h> 3 #include <algorithm> 4 #include<iostream> 5 #include<math.h> 6 7 using namespace std; 8 9 int main() 10 { 11 int cas,i,n,right,left; 12 double res,a[55],b[120]; 13 cin>>cas; 14 while(cas--) 15 { 16 cin>>n; 17 int j=0; 18 for(i=0;i<n;i++) 19 { 20 cin>>a[i]; 21 } 22 sort(a,a+n); 23 for(i=1;i<n;i++) 24 { 25 b[j++]=a[i]-a[i-1]; 26 b[j++]=(a[i]-a[i-1]) /2 ; 27 } 28 sort(b,b+j); 29 int flag=0; 30 j=j-1; 31 res=(double)b[j]; 32 33 while(1) 34 { 35 right =0; left=0; 36 flag=0; 37 for(i=1;i<n;i++) 38 { 39 if(i==n-1) continue; 40 if(a[i]-res<a[i-1] && a[i]+res>a[i+1]) 41 { 42 flag=1; 43 break; 44 } 45 if(a[i]-res>=a[i-1]) 46 { 47 if(right==1) 48 { 49 if(a[i]-a[i-1]==res) {left=1; right=0; } 50 else if(a[i]-a[i-1]>=2*res) { left=1; right=0; } 51 else if(a[i]+res<=a[i+1]) { left=0; right=1; } 52 else flag=1; 53 } 54 else { left=1; right=0; } 55 } 56 else if(a[i]+res<=a[i+1]) { 57 right=1; 58 left=0; 59 } 60 61 } 62 if(flag==1) { 63 j--; 64 res=b[j]; 65 } 66 else 67 { 68 printf("%.3lf\n",res); 69 break; 70 } 71 } 72 } 73 return 0; 74 }
Miaomiao's Geometry