服装搭配_新浪公开课_新浪教育_新浪网

服装搭配_新浪公开课_新浪教育_新浪网的相关文章

浙江理工大学公开课:设计与生活_全6集_网易公开课

浙江理工大学公开课:设计与生活_全6集_网易公开课 中国大学视频公开课  浙江理工大学公开课:设计与生活

新浪公开课和网易公开课-开放课件联盟

网易公开课是属于OCWC(Open Course Ware Consortium 开放课件联盟) OCWC是由MIT发起的, 非盈利目的的公益组织, 遵守CC协议. 目的就是为了知识传播, OCWC本身没有商业模式, 也没有这方面的计划. 新浪应该还没有加入OCWC, 是遵守CC协议进行的再次传播.国内公开课的CC协议方面, 使用的是 署名, 相同方式共享, 非商业使用. 对于这类公开课, 大公司本身不求在上面获得直接的经济回报. 一方面确实是功德无量, 加速了知识的传播速度和广度, 另一方面也

加州理工学院公开课:机器学习与数据挖掘_过拟化(第十一课)

课程简介 本节课主要介绍了关于机器学习中的过拟化问题.作者指出,区别一个专业级玩家和业余爱好者的方法之一就是他们如何处理过拟化问题.通过该课程,我们可以知道样本数据的拟合并不是越高越好,因为噪声的存在将使得过拟化问题的出现.最后简介了处理过拟合的两种方法. 课程大纲 1.什么是过拟化?(what is overfitting?) 2.过拟化中的噪声.(The role of noise) 3.确定性噪声.(Deterministic noise) 4.如何处理过拟化问题.(Dealing wit

加州理工学院公开课:机器学习与数据挖掘_线性模型

这一课时主要是讲述了线性模型的一些处理. 包括: 1.输入数据的表示(Input Representation) 2.线性分类(Linear Classification) 3.线性回归(Linear Regression) 4.非线性模型转换(Nonlinear Transformation) 作者认为,如果要测试某个模型的可用性,做好就是用真实数据. 为了讲解线性模型如何应用,作者利用线性模型来解决邮局数据辨别问题: 由于不同的人有不同的书写习惯,对于同一个数字其书写形式可能各异,但是其基本

加州理工学院公开课:机器学习与数据挖掘_神经网络(第十课)

课程简介: 本节课主要介绍人工神经网络.通过介绍评定模型,随机梯度下降法,生物启发和感知器系统,讲师用视图和数学解析式详细地讲解了神经网络的运行过程以及原理. 课程大纲: 1.Stochastic Gradient Descent ( 随机梯度下降法 ) 2.Neural Network Model ( 神经网络模型 ) 3.Backpropagation Algorithm ( 反向传播算法 ) 4.Summarize 1.Stochastic Gradient Descent 在上一节课里,

加州理工学院公开课:机器学习与数据挖掘_偏差与方差权衡(第八课)

课程简介: 在回顾了VC分析之后,本节课重点介绍了另一个理解泛化的理论:偏差与方差,并通过学习曲线的运用比较了VC分析和偏偏差方差权衡的不同用途. 课程大纲: 1.偏差与方差的权衡 2.学习曲线 1.偏差与方差的权衡 在上一节课:VC 维中,我们求出了 Eout 的边界,Eout < Ein + Ω.该公式描述了 Eout 的边界.现在让我们从不同的角度来分析 Eout. 我们把 Eout 分解为两部分: 1.假设集 H 近似 f 的能力(即 H 中与 f 距离最小的 G 与 f 的误差大小 )

加州理工学院公开课:机器学习与数据挖掘_误差和噪声(第四课)

这一课的主题是:误差分析与噪声处理. 该课时的主要内容如下: 1.Nonlinear Transformation(Continue)(非线性转换(续)) 2.Error Measure (误差度量)(重点) 3.Noisy Targets(噪声指标)(重点) 4.Preamble to the Theory(理论热身) 1.Nonlinear Transformation: 在上一节课的最后,作者举了一个关于非线性转换的例子.通过该例子我们可以直观的看到非线性的数据可以被转化成线性的数据并且利

加州理工学院公开课:机器学习与数据挖掘_训练与测试(第五课)

课程简介: 本视频为机器学习系列课程第5章.主要定量研究训练与测试之间的关系,并引入学习模型中的一个重要概念--断点.课程深入浅出,从正射线.正区间和凸集三个具体例子入手,寻找突破点,从而得出训练集与测试集的关系. 课程大纲(Outline): 1.从训练到测试(From Training to Testing) 2.举例说明(Illustrative Examples ) 3.关键概念---- 断点(Key Notion --- Break Point ) 4.难题(Puzzle) 1.从训练

斯坦福大学Andrew Ng教授主讲的《机器学习》公开课观后感

课程设置和内容 视频课程分为20集,每集72-85分钟.实体课程大概一周2次,中间还穿插助教上的习题课,大概一个学期的课程. 内容涉及四大部分,分别是:监督学习(2-8集).学习理论(9集-11集).无监督学习(12-15集).强化学习(16-20集).监督学习和无监督学习,基本上是机器学习的二分法:强化学习位于两者之间:而学习理论则从总体上介绍了如何选择.使用机器学习来解决实际问题,以及调试(比如:误差分析.销蚀分析).调优(比如:模型选择.特征选择)的各种方法和要注意的事项(比如,避免过早优