利用R进行多元线性回归分析

对于一个因变量y,n个自变量x1,...,xn,要如何判断y与这n个自变量之间是否存在线性关系呢?

肯定是要利用他们的数据集,假设数据集中有m个样本,那么,每个样本都分别对应着一个因变量和一个n维的自变量;

m个样本,就对应着一个m维的列向量Y,一个m×n维的矩阵X

Y是X的每一列X1,...,Xn的函数

那么,Y与X1,...,Xn之间到底是什么关系呢?是满足Y=a1*X1+...+an*Xn这样的线性关系还是Y=f(X1,...,Xn)这样的非线性关系呢?

为了解决这个问题,可以首先利用多元线性回归

时间: 2024-10-14 12:55:27

利用R进行多元线性回归分析的相关文章

R语言 多元线性回归分析

#线性模型中有关函数#基本函数 a<-lm(模型公式,数据源) #anova(a)计算方差分析表#coef(a)提取模型系数#devinace(a)计算残差平方和#formula(a)提取模型公式#plot(a)绘制模型诊断图#predict(a)用作预测#print(a)显示#residuals()计算残差#setp()逐步回归分析#summary()提取模型资料 #多元线性回归分析 #回归系数的估计 #显著性检验: 1回归系数的显著性检验 t检验 就是检验某个变量系数是否为0 2回归方程的显

多元线性回归分析浅谈

  回归分析方法说白了就是处理多个变量相互依赖关系的一种数理统计方法(之前并没学过数理统计,恶补了一下,挺爽的~).这篇随笔中主要运用了线性代数和数理统计知识,欢迎各方大佬指正,错误之处,不胜感激. 一.建立模型 这里我们假定研究变量Y与x1,x2,x3--xm,m个变量之间的相互依赖关系.采取现实生活中观测的n组变量Y与变量x数据,建立如下方程组: yi=β0+β1xi1+β2xi2+--βmxim+εi(i=1,2,3--n) 即:Y=Cβ+ε 为弥补建立的方程组与实际数据的误差,引入ε为随

R语言基础知识学习(五):R中的线性回归分析

在R中线性回归分析的函数是lm(). (1)一元线性回归 我们可以根据以上数据来分析合金的强度是否与碳含量有关系. 首用以下命令把数据读取到R中: x <- c(seq(0.10,0.18,by = 0.01),0.20,0.21,0.23)y <- c(42.0,43.5,45.0,45.5,45.0,47.5,49.0,53.0,50.0,55.0,55.0,60.0)plot(x,y) 通过画图得到想x,y两个变量之间存在某种线性关系 所以,就可以用lm()函数来拟合直线,通过回归函数l

R语言之线性回归分析

一.建立简单线性回归模型可使用函数lm实现,函数是围绕公式展开的,lm接受一个公式对象作为试图建立的模型,可以通过?formula来查询通用格式,data.frame也可以被明确指定,它包括所需的数据> library(RSADBE)> data(IO_Time)> IO_lm = lm(CPU_Time ~ No_of_IO,data=IO_Time)> class(IO_lm)> summary(IO_lm)结果中:F-statistic: 635.4 on 1 and

一元线性回归分析笔记

1.定义: 利用已有样本,产自拟合方程,从而对(未知数据)进行预测. 2.用途: 预测,合理性判断. 3.分类: 线性回归分析:一元线性回归,多元线性回归,广义线性(将非线性转化为线性回归,logic回归) 非线性回归分析 4.困难: 变量选取,多重共线性,观察拟合方程,避免过度拟合 5.关系: 函数关系:确定性关系,y=a*x+b 相关关系:非确定性关系 相关系数:正数为正相关(同增同长),负数为负相关(同增同减) 6.一元线性回归模型: 1) 若X与Y间存在着较强的相关关系,则我们有Y≍a+

【R】多元线性回归

R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整.这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及<R语言实战>的OLS(Ordinary Least Square)回归模型章节来总结一下,诊断多元线性回归模型的操作分析步骤. 1.选择预测变量 因变量比较容易确定,多元回归模型中难在自变量的选择.自变量选择主要可分为向前选择(逐次加使RSS最小的自变量),向后选择(逐

一元线性回归分析及java实现

http://blog.csdn.net/hwwn2009/article/details/38414911 一元线性回归分析及java实现 2014-08-07 11:02 1072人阅读 评论(0) 收藏 举报  分类: DataMining(17)  一元线性回归分析是处理两个变量之间关系的最简单模型,它所研究的对象是两个变量之间的线性相关关系.通过对这个模型的讨论,我们不仅可以掌握有关一元线性回归的知识,而且可以从中了解回归分析方法的基本思想.方法和应用. 一.问题的提出 例2-1-1 

R语言之Logic回归分析

理论上,回归分析是在目标变量为连续型数据的情况下建模的,它不能处理目标变量为分类型数据的情况. 而logic回归分析的思路是把分类变量(“是否开通VIP”)转化为连续变量(“开通VIP的概率”),进而使用回归分析的方法间接地研究分类分析的问题. 一.原理 假设vip变量为分类变量,其取值只有0和1,这是分类型变量,无法通过回归分析建模. 但是,vip取值为1的概率却是一个连续型变量(prob.vip),可以使用回归分析为prob.vip建模: prob.vip=k1*x1+k2*x2+k3*x3

微软数据挖掘算法:Microsoft 线性回归分析算法(11)

前言 此篇为微软系列挖掘算法的最后一篇了,完整该篇之后,微软在商业智能这块提供的一系列挖掘算法我们就算总结完成了,在此系列中涵盖了微软在商业智能(BI)模块系统所能提供的所有挖掘算法,当然此框架完全可以自己扩充,可以自定义挖掘算法,不过目前此系列中还不涉及,只涉及微软提供的算法,当然这些算法已经基本涵盖大部分的商业数据挖掘的应用场景,也就是说熟练了这些算法大部分的应用场景都能游刃有余的解决,每篇算法总结包含:算法原理.算法特点.应用场景以及具体的操作详细步骤.为了方便阅读,我还特定整理一篇目录: