C#函数式编程之递归调用

关于递归相信大家已经熟悉的不能再熟悉了,所以笔者在这里不就不多费口舌,不懂的读者们可以在博客园中找到很多与之相关的博客。下面我们直接切入正题,开始介绍尾递归。

尾递归

普通递归和尾递归如果仅仅只是从代码的角度出发来看,我们可能发现不了他的特点,所以笔者利用两张堆栈上的图来展示具体的差距在哪,首先我们来看看普通的递归调用的情况,如下图1.1所示:

假设这里执行的函数是Func1,并且Func1中通过递归调用了自己,那么我们可以看到栈上在每次调用Func1的时候都会重新将函数返回地址等其他参数放入栈中,在递归次数较少的情况下,这样是不会有问题的。但如果递归调用次数达到一定的数量级,则会将栈空间消耗光。因此,就提出了尾递归。而尾递归的栈图如1.2所示:

一样还是递归,但是每次执行自身的时候并不会在栈空间中申请新的空间,类似于for循环的效果,面对递归次数很多的情况下也不会出现什么问题。但是新的问题就出来了,在C#中编译器不会做到这一步优化,而是在jit编译器执行时才会进行优化。并且只有64位才进行优化。在语言的层面上我们也要遵守一定的原则,才能让编译器知道去优化。当然有些喜欢看博客的人可能早就知道尾递归就是在最后return的时候调用自身。我们可以通过一串示意代码来看尾调用:

int Func1()

{

return Func1();

}

当然上面这串代码会形成一个死循环,因为这里我们没有基线条件。下面我们举一个例子:

这个函数想必应该会比较熟悉,就是计算阶乘的。但是我们可以发现函数sunfc最后的返回语句并不是直接调用函数本身,而是x*sfunc(x -1),恰恰就是因为前面这个x*就会导致编译器无法优化,从而只能采用普通的递归调用的方式去执行,那么我们就需要利用一些模式去改变,首先我们先介绍的是“累加器传递模式”,可能名字比较悬乎,其实就是将当前的计算结果传递给下一次调用函数中,这样当到达基线条件后直接根据上次计算的结果算出最终结果返回即可,如果将上面的代码采用这个模式就是下面这个样子:

采用这个模式之后我们就变回了尾递归了,当执行到基线条件时,直接返回y的值即可。根本不需要回溯到以前。除了利用这种模式,我们还可以利用一种“后继传递模式”,跟累加器传递模式一样也需要修改函数签名,增加一个参数,我们继续修改上面这串代码:

相比累加器传递模式,这种方式比较难理解,其实sfunc在到达基线条件时y就等同于下面这个lambda表达式:a => a*4*3*2,然后就是调用y(1)就直接计算最终的结果了。在简单点就是y这个函数被包装了了好几层,比如上面这段函数执行结束时y的调用顺序:

a为1传递给y(2 * a),结果就是y(2)。

a为2传递给y(3 * a),结果就是y(6)。

a为6传递给y(4 * a),结果就是y(24)。

a为24传递给x => x,输出24。

如果还是不理解只能下断点,调试自己琢磨琢磨了,实在不懂的可以Q问。

时间: 2024-10-06 14:30:28

C#函数式编程之递归调用的相关文章

C#中的函数式编程:递归与纯函数(二)

在序言中,我们提到函数式编程的两大特征:无副作用.函数是第一公民.现在,我们先来深入第一个特征:无副作用. 无副作用是通过引用透明(Referential transparency)来定义的.如果一个表达式满足将它替换成它的值,而程序的行为不变,则称这个表达式是引用透明的. 现在,我们不妨进行一个尝试:我们来实现一些函数,但是这次有一个限制:只能用无副作用的表达式. 先以素数判定为例子,我们要写一个函数bool IsPrime(int n),它返回这个整数是不是素数.简单起见,我们采用最朴素的方

函数式编程扫盲篇

1. 概论 在过去的近十年的时间里,面向对象编程大行其道.以至于在大学的教育里,老师也只会教给我们两种编程模型,面向过程和面向对象. 孰不知,在面向对象产生之前,在面向对象思想产生之前,函数式编程已经有了数十年的历史. 那么,接下来,就让我们回顾这个古老又现代的编程模型,让我们看看究竟是什么魔力将这个概念,将这个古老的概念,在21世纪的今天再次拉入了我们的视野. 2. 什么是函数式编程 在维基百科中,已经对函数式编程有了很详细的介绍. 那我们就来摘取一下Wiki上对Functional Prog

《Python核心编程》第十一章:函数和函数式编程

本章大纲 介绍函数的创建.调用方式,内部函数.函数装饰器.函数参数的定义和传递.函数式编程.变量作用域.闭包. 知识点 11.1 什么是函数? 函数是对程序逻辑进行结构化或过程化的一种编程方法,以实现代码的复用. python 的过程就是函数,因为解释器会隐式地返回默认值 None. python 动态地确定函数返回类型,而不是进行直接的类型关联. 可以使用 type() 函数作为代理,处理有不同参数类型的函数的多重声明,以模拟其他编程语言的函数重载. 11.2 调用函数 11.2.1 关键字参

Java函数式编程和lambda表达式

为什么要使用函数式编程 函数式编程更多时候是一种编程的思维方式,是种方法论.函数式与命令式编程的区别主要在于:函数式编程是告诉代码你要做什么,而命令式编程则是告诉代码要怎么做.说白了,函数式编程是基于某种语法或调用API去进行编程.例如,我们现在需要从一组数字中,找出最小的那个数字,若使用用命令式编程实现这个需求的话,那么所编写的代码如下: public static void main(String[] args) { int[] nums = new int[]{1, 2, 3, 4, 5,

C#函数式编程中的递归调用之尾递归详解

关于递归相信大家已经熟悉的不能再熟悉了,所以笔者在这里就不多费口舌,不懂的读者们可以在博客园中找到很多与之相关的博客.下面我们直接切入正题,开始介绍尾递归. 尾递归 普通递归和尾递归如果仅仅只是从代码的角度出发来看,我们可能发现不了他的特点,所以笔者利用两张堆栈上的图来展示具体的差距在哪,首先我们来看看普通的递归调用的情况,如下图1.1所示: 假设这里执行的函数是Func1,并且Func1中通过递归调用了自己,那么我们可以看到栈上在每次调用Func1的时候都会重新将函数返回地址等其他参数放入栈中

Python学习笔记八:文件操作(续),文件编码与解码,函数,递归,函数式编程介绍,高阶函数

文件操作(续) 获得文件句柄位置,f.tell(),从0开始,按字符数计数 f.read(5),读取5个字符 返回文件句柄到某位置,f.seek(0) 文件在编辑过程中改变编码,f.detech() 获取文件编码,f.encoding() 获取文件在内存中的编号,f.fileno() 获取文件终端类型(tty.打印机等),f.isatty() 获取文件名,f.name() 判断文件句柄是否可移动(tty等不可移动),f.seekable() 判断文件是否可读,f.readable() 判断文件是

函数式编程-尾递归、尾调用

一.什么是尾调用? 尾调用的概念非常简单,一句话就能说清楚,就是指某个函数的最后一步是调用另一个函数. function f(x){ return g(x); } 上面代码中,函数f的最后一步是调用函数g,这就叫尾调用. 以下两种情况,都不属于尾调用. // 情况一 function f(x){ let y = g(x); return y; } // 情况二 function f(x){ return g(x) + 1; } 上面代码中,情况一是调用函数g之后,还有别的操作,所以不属于尾调用,

编程题:用递归调用实现,求N!(!阶乘)。

#include<stdio.h> long fac(int n) { if(n==1) return 1L;             /*"1L"为长整型常量*/ else return n*fac(n-1); } void main() {int m; scanf("%d",&m); printf("%2d!=%d\n",m,fac(m)); } 算法解析: 运行结果: 编程题:用递归调用实现,求N!(!阶乘).,布布扣,

PYTHON修饰器的函数式编程

转自:http://coolshell.cn/articles/11265.html Python修饰器的函数式编程 Python的修饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西.虽然好像,他们要干的事都很相似--都是想要对一个已有的模块做一些"修饰工作",所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能