[转]环形缓冲区

在通信程序中,经常使用环形缓冲区作为数据结构来存放通信中发送和接收的数据。环形缓冲区是一个先进先出的循环缓冲区,可以向通信程序提供对缓冲区的互斥访问。

1、环形缓冲区的实现原理

环形缓冲区通常有一个读指针和一个写指针。读指针指向环形缓冲区中可读的数据,写指针指向环形缓冲区中可写的缓冲区。通过移动读指针和写指针就可以实现缓冲区的数据读取和写入。在通常情况下,环形缓冲区的读用户仅仅会影响读指针,而写用户仅仅会影响写指针。如果仅仅有一个读用户和一个写用户,那么不需要添加互斥保护机制就可以保证数据的正确性。如果有多个读写用户访问环形缓冲区,那么必须添加互斥保护机制来确保多个用户互斥访问环形缓冲区。

图1、图2和图3是一个环形缓冲区的运行示意图。图1是环形缓冲区的初始状态,可以看到读指针和写指针都指向第一个缓冲区处;图2是向环形缓冲区中添加了一个数据后的情况,可以看到写指针已经移动到数据块2的位置,而读指针没有移动;图3是环形缓冲区进行了读取和添加后的状态,可以看到环形缓冲区中已经添加了两个数据,已经读取了一个数据。

2、实例:环形缓冲区的实现

环形缓冲区是数据通信程序中使用最为广泛的数据结构之一,下面的代码,实现了一个环形缓冲区:

/*ringbuf .c*/

#include<stdio. h>

#include<ctype. h>

#define NMAX 8

int iput = 0; /* 环形缓冲区的当前放入位置 */

int iget = 0; /* 缓冲区的当前取出位置 */

int n = 0; /* 环形缓冲区中的元素总数量 */

double buffer[NMAX];

/* 环形缓冲区的地址编号计算函数,如果到达唤醒缓冲区的尾部,将绕回到头部。

环形缓冲区的有效地址编号为:0到(NMAX-1)

*/

int addring (int i)

{

return (i+1) == NMAX ? 0 : i+1;

}

/* 从环形缓冲区中取一个元素 */

double get(void)

{

int pos;

if (n>0){

Pos = iget;

iget = addring(iget);

n--;

return buffer[pos];

}

else {

printf(“Buffer is empty\n”);

return 0.0;

}

/* 向环形缓冲区中放入一个元素*/

void put(double z)

{

if (n<NMAX){

buffer[iput]=z;

iput = addring(iput);

n++;

}

else

printf(“Buffer is full\n”);

}

int main{void)

{

chat opera[5];

double z;

do {

printf(“Please input p|g|e?”);

scanf(“%s”, &opera);

switch(tolower(opera[0])){

case ‘p’: /* put */

printf(“Please input a float number?”);

scanf(“%lf”, &z);

put(z);

break;

case ‘g’: /* get */

z = get();

printf(“%8.2f from Buffer\n”, z);

break;

case ‘e’:

printf(“End\n”);

break;

default:

printf(“%s - Operation command error! \n”, opera);

}/* end switch */

}while(opera[0] != ’e’);

return 0;

}

在CAN通信卡设备驱动程序中,为了增强CAN通信卡的通信能力、提高通信效率,根据CAN的特点,使用两级缓冲区结构,即直接面向CAN通信卡的收发缓 冲区和直接面向系统调用的接收帧缓冲区。 通讯中的收发缓冲区一般采用环形队列(或称为FIFO队列),使用环形的缓冲区可以使得读写并发执行,读进程和写进程可以采用“生产者和消费者”的模型来 访问缓冲区,从而方便了缓存的使用和管理。然而,环形缓冲区的执行效率并不高,每读一个字节之前,需要判断缓冲区是否为空,并且移动尾指针时需要进行“折行处理”(即当指针指到缓冲区内存的末尾时,需要新将其定向到缓冲区的首地址);每写一个字节之前,需要判断缓区是否为,并且移动尾指针时同样需要进行“ 折行处理”。程序大部分的执行过程都是在处理个别极端的情况。只有小部分在进行实际有效的操作。这就是软件工程中所谓的“8比2”关系。结合CAN通讯实际情况,在本设计中对环形队列进行了改进,可以较大地提高数据的收发效率。 由于CAN通信卡上接收和发送缓冲器每次只接收一帧CAN数据,而且根据CAN的通讯协议,CAN控制器的发送数据由1个字节的标识符、一个字节的RTR 和DLC位及8个字节的数据区组成,共10个字节;接收缓冲器与之类似,也有10个字节的寄存器。所以CAN控制器收的数据是短小的定长帧(数据可以不满 8字节)。 于是,采用度为10字节的数据块业分配内存比较方便,即每次需要内存缓冲区时,直接分配10个字节,由于这10个字节的地址是线性的,故不需要进行“折行”处理。更重要的是,在向缓冲区中写数据时,只需要判断一次是否有空闲块并获取其块首指针就可以了,从而减少了重复性的条件判断,大大提高了程序的执行效率;同样在从缓冲队列中读取数据时,也是一次读取10字节的数据块,同样减少了重复性的条件判断。 在CAN卡驱动程序中采用如下所示的称为“Block_Ring_t”的数据结构作为收发数据的缓冲区:


typedef struct {

long signature;

unsigned char *head_p;

unsigned char *tail_p;

unsigned char *begin_p;

unsigned char *end_p;

unsigned char buffer [BLOCK_RING_BUFFER_SIZE];

int usedbytes;

}Block_Ring_t;

该数据结构在通用的环形队列上增加了一个数据成员usedbytes,它表示当前缓冲区中有多少字节的空间被占用了。使用usedbytes,可以比较方 便地进行缓冲区满或空的判断。当usedbytes=0时,缓冲区空;当usedbytes=BLOCK_RING_BUFFER_SIZE时,缓冲区 满。 本驱动程序除了收发缓冲区外,还有一个接收帧缓冲区,接收帧队列负责管理经Hilon A协议解包后得到的数据帧。由于有可能要同接收多个数据帧,而根据CAN总线遥通信协议,高优先级的报文将抢占总线,则有可能在接收一个低优先级且被分为 好几段发送的数据帧时,被一个优先级高的数据帧打断。这样会出现同时接收到多个数据帧中的数据包,因而需要有个接收队列对同时接收的数据帧进行管理。 当有新的数据包到来时,应根据addr(通讯地址),mode(通讯方式),index(数据包的序号)来判断是否是新的数据帧。如果是,则开辟新的 frame_node;否则如果已有相应的帧节点存地,则将数据附加到该帧的末尾;在插入数据的同时,应该检查接收包的序号是否正确,如不正确将丢弃这包 数据。 每次建立新的frame_node时,需要向frame_queue申请内存空间;当frame_queue已满时,释放掉队首的节点(最早接收的但未完 成的帧)并返回该节点的指针。 当系统调用读取了接收帧后,释放该节点空间,使设备驱动程序可以重新使用该节点。

形缓冲区:环形缓冲队列学习

来源: 发布时间:星期四, 2008年9月25日 浏览:117次 评论:0

项目中需要线程之间共享一个缓冲FIFO队列,一个线程往队列中添数据,另一个线程取数据(经典的生产者-消费者问题)。开始考虑用STL的vector容器, 但不需要随机访问,频繁的删除最前的元素引起内存移动,降低了效率。使用LinkList做队列的话,也需要频繁分配和释放结点内存。于是自己实现一个有 限大小的FIFO队列,直接采用数组进行环形读取。

队列的读写需要在外部进程线程同步(另外写了一个RWGuard类, 见另一文)

到项目的针对性简单性,实现了一个简单的环形缓冲队列,比STL的vector简单

PS: 第一次使用模板,原来类模板的定义要放在.h 文件中, 不然会出现连接错误。

template <class _Type>
class CShareQueue 
{
public:
CShareQueue();
CShareQueue(unsigned int bufsize);
virtual ~CShareQueue();

_Type pop_front();
bool push_back( _Type item);
//返回容量
unsigned int capacity() { //warning:需要外部数据一致性
return m_capacity;
}
//返回当前个数
unsigned int size() { //warning:需要外部数据一致性
return m_size;
}
//是否满//warning: 需要外部控制数据一致性
bool IsFull() {
return (m_size >= m_capacity);
}

bool IsEmpty() {
return (m_size == 0);
}

protected:
UINT m_head;
UINT m_tail;
UINT m_size;
UINT m_capacity;
_Type *pBuf;

};

template <class _Type>
CShareQueue<_Type>::CShareQueue() : m_head(0), m_tail(0), m_size(0)
{
pBuf = new _Type[512];//默认512
m_capacity = 512;
}

template <class _Type>
CShareQueue<_Type>::CShareQueue(unsigned int bufsize) : m_head(0), m_tail(0)
{
if( bufsize > 512 || bufsize < 1)
{
pBuf = new _Type[512];
m_capacity = 512;
}
else
{
pBuf = new _Type[bufsize];
m_capacity = bufsize;
}
}

template <class _Type>
CShareQueue<_Type>::~CShareQueue()
{
delete[] pBuf;
pBuf = NULL;
m_head = m_tail = m_size = m_capacity = 0;
}

//前面弹出一个元素
template <class _Type>
_Type CShareQueue<_Type>::pop_front()
{
if( IsEmpty() )
{
return NULL;
}
_Type itemtmp;
itemtmp = pBuf[m_head];
m_head = (m_head + 1) % m_capacity;
--m_size;
return itemtmp;

}

//从尾部加入队列
template <class _Type>
bool CShareQueue<_Type>::push_back( _Type item)
{
if ( IsFull() )
{
return FALSE;
}
pBuf[m_tail] = item;
m_tail = (m_tail + 1) % m_capacity;
++m_size;
return TRUE;
}

#endif // !defined(_DALY_CSHAREQUEUE_H_)

时间: 2024-10-21 00:12:48

[转]环形缓冲区的相关文章

生产者消费者模式下的并发无锁环形缓冲区

上一篇记录了几种环形缓冲区的设计方法和环形缓冲区在生产者消费者模式下的使用(并发有锁),这一篇主要看看怎么实现并发无锁. 0.简单的说明 首先对环形缓冲区做下说明: 环形缓冲区使用改进的数组版本,缓冲区容量为2的幂 缓冲区满阻塞生产者,消费者进行消费后,缓冲区又有可用资源,由消费者唤醒生产者 缓冲区空阻塞消费者,生产者进程生产后,缓冲区又有可用资源,由生产者唤醒消费者 然后对涉及到的几个技术做下说明: ⑴CAS,Compare & Set,X86下对应的是CMPXCHG 汇编指令,原子操作,基本

环形缓冲区

作者:曾志优 出处:http://www.cnblogs.com/zengzy 1.环形缓冲区 缓冲区的好处,就是空间换时间和协调快慢线程.缓冲区可以用很多设计法,这里说一下环形缓冲区的几种设计方案,可以看成是几种环形缓冲区的模式.设 计环形缓冲区涉及到几个点,一是超出缓冲区大小的的索引如何处理,二是如何表示缓冲区满和缓冲区空,三是如何入队.出队,四是缓冲区中数据长度如何计算. ps.规定以下所有方案,在缓冲区满时不可再写入数据,缓冲区空时不能读数据 1.1.常规数组环形缓冲区 设缓冲区大小为N

环形缓冲区的设计及其在生产者消费者模式下的使用(并发有锁环形队列)

1.环形缓冲区 缓冲区的好处,就是空间换时间和协调快慢线程.缓冲区可以用很多设计法,这里说一下环形缓冲区的几种设计方案,可以看成是几种环形缓冲区的模式.设计环形缓冲区涉及到几个点,一是超出缓冲区大小的的索引如何处理,二是如何表示缓冲区满和缓冲区空,三是如何入队.出队,四是缓冲区中数据长度如何计算. ps.规定以下所有方案,在缓冲区满时不可再写入数据,缓冲区空时不能读数据 1.1.常规数组环形缓冲区 设缓冲区大小为N,队头out,队尾in,out.in均是下标表示: 初始时,in=out=0 队头

SQL Server 环形缓冲区(Ring Buffer) -- RING_BUFFER_SCHEDULER_MONITOR 获取SQL

SQL Server 环形缓冲区(Ring Buffer) -- RING_BUFFER_SCHEDULER_MONITOR 获取SQL进程的CPU利用率 环形缓冲区存储了有关CPU利用率的信息.这些信息每分钟更新一次.所以你可以跟踪到4小时15分钟内给定时间点的CPU利用率.下面的输出显示了SQL实例的CPU利用率和其他活动进程的CPU利用率.这将帮助我们分析是否SQL Server进程占用大量CPU. 对于SQL Server 2005: declare @ts_now bigint sel

用于拼包和解码的环形缓冲区类

using System;using System.Collections.Generic;using System.Linq;using System.Text; namespace Test{    /// <summary>    /// 环形缓冲区    /// </summary>    public class CRawBuffer    {        byte[] m_BufArr;        int m_i4BufLen;   //数据缓冲区大小      

SQL Server 环形缓冲区(Ring Buffer) -- RING_BUFFER_EXCEPTION 跟踪异常

SQL Server 环形缓冲区(Ring Buffer) -- RING_BUFFER_EXCEPTION 跟踪异常 动态管理视图sys.dm_os_ring_buffers使得实时定位问题更加容易.环形缓冲包含大量的在服务器上发生的事件.当前,我正碰到锁请求超时问题.根据SQL Server Profiler跟踪捕获,发现服务器收到大量如下信息: Lock request time out period exceeded. 我们找到了语句并修改,来阻止所请求超时的发生.现在服务器正被监控,我

SQL Server 环形缓冲区(Ring Buffer) -- RING_BUFFER_SECURITY_ERROR 诊断安全相

SQL Server 环形缓冲区(Ring Buffer) -- RING_BUFFER_SECURITY_ERROR 诊断安全相关错误 环形缓冲存储了大量的在过去一段时间段内的安全错误信息,有助于分析SQL Server安全问题. 例如,当你尝试创建一个SQL登录账号,并启用密码策略,但是提供的密码不匹配密码策略.然后,你将会收到一个错误消息说明密码不匹配.这个错误将会存储在环形缓冲区.当你执行下面的查询,你将会导致错误的SPID以及导致失败的API名称.如上面示例描述的,你会找到NetVal

SQL Server 环形缓冲区(Ring Buffer) -- RING_BUFFER_MEMORY_BROKER 诊断内部内存压力

SQL Server 环形缓冲区(Ring Buffer) -- RING_BUFFER_MEMORY_BROKER 诊断内部内存压力 内存Broker 内存Broker的职责是根据其需求在大内存消费者之间分配内存.内存Broker是一种SQLOS的组件,但是与缓冲池紧密结合.此外,内存Broker只会将缓冲池的内存管理器所控制的内存考虑在内.内存Broker会监视缓冲池的内存需求,以及由大内存消费者所消费的内存.基于所收集的信息,它会估计每个消费者的"最优化"内存分布,并将此信息广播

SQL Server 环形缓冲区(Ring Buffer) -- RING BUFFER CONNECTIVITY 的深入理解

SQL Server 环形缓冲区(Ring Buffer) -- RING BUFFER CONNECTIVITY 的深入理解 首先我们从连接的Ring Buffer数据返回的XML来入手. SELECT CAST(record as xml) AS record_data FROM sys.dm_os_ring_buffers WHERE ring_buffer_type= 'RING_BUFFER_CONNECTIVITY' 执行上面的语句,得到下面的结果: 点击XML的超链接,打开文件内容

线程安全的环形缓冲区实现

来源:http://blog.csdn.net/lezhiyong    应用背景:线程1将每次数量不一的音频采样点(PCM音频数据)写入环形缓冲区,线程2每次取固定数量采样点送音频编码器,线程1线程2在平均时间内的读写数据量相等.(倒入桶中的水量有时大有时小,但每次取一瓢喝:)   该环形缓冲区借鉴CoolPlayer音频播放器中的环形缓冲区代码实现,在读写操作函数中加了锁,允许多线程同时操作.CPs_CircleBuffer基于内存段的读写,比用模板实现的环形缓冲队列适用的数据类型更广些,