什么是CPU密集型、IO密集型?

CPU密集型(CPU-bound)

CPU密集型也叫计算密集型,指的是系统的硬盘、内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存),I/O在很短的时间就可以完成,而CPU还有许多运算要处理,CPU Loading很高。

在多重程序系统中,大部份时间用来做计算、逻辑判断等CPU动作的程序称之CPU bound。例如一个计算圆周率至小数点一千位以下的程序,在执行的过程当中绝大部份时间用在三角函数和开根号的计算,便是属于CPU bound的程序。

CPU bound的程序一般而言CPU占用率相当高。这可能是因为任务本身不太需要访问I/O设备,也可能是因为程序是多线程实现因此屏蔽掉了等待I/O的时间。

IO密集型(I/O bound)

IO密集型指的是系统的CPU性能相对硬盘、内存要好很多,此时,系统运作,大部分的状况是CPU在等I/O (硬盘/内存) 的读/写操作,此时CPU Loading并不高。

I/O bound的程序一般在达到性能极限时,CPU占用率仍然较低。这可能是因为任务本身需要大量I/O操作,而pipeline做得不是很好,没有充分利用处理器能力。

CPU密集型 vs IO密集型

我们可以把任务分为计算密集型和IO密集型。

计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。

计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。

第二种任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。

IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。

总之,计算密集型程序适合C语言多线程,I/O密集型适合脚本语言开发的多线程。

推荐阅读

干货:免费领取2TB架构师四阶段视频教程

面经:史上最全Java多线程面试题及答案

工具:推荐一款在线创作流程图、思维导图软件

原文地址:https://www.cnblogs.com/jpfss/p/10861320.html

时间: 2024-11-10 15:44:09

什么是CPU密集型、IO密集型?的相关文章

计算&IO密集型任务的 优化

问题原因: 最近由于工作实际需求,需要对某个计算单元的计算方法进行重构.原因是由于这个计算单元的计算耗时较长,单个计算耗时大约在1s-2s之间,而新的需求下,要求在20s内对大约1500个计算单元计算完毕.如果不对原有计算单元的计算方法进行优化及效率提升,那么以8核CPU(超线程16线程)来说,在单个计算1s的理想条件,服务器16线程完成任务的理论上限也需要90s+,何况多线程还并不是简单的效率叠加,实际测试情况下,耗时往往在150s以上.因此,对原有计算单元的计算优化是必须的. 问题分析: 通

数据库 IO密集型 与 CPU密集型

1.IO密集型: 数据库仅提供建立的查询插入等操作,复杂的业务逻辑依赖与程序的实现,需要程序与数据库的频繁交互 2.CPU密集型: 一些复杂的逻辑计算可以在数据库中进行处理,可以依赖与数据库端的存储过程,触发器等功能,减少了程序代码与数据库的交互,减轻访问数据 库带来的IO压力,对于装备有高速磁盘阵列的服务器来说,可以实现CPU密集型 对于目前,高并发,数据量大的动态网站来说,数据库应该为IO密集型. http://blog.chinaunix.net/uid-116213-id-3086203

什么是CPU密集型、IO密集型?(转发)

CPU密集型(CPU-bound) CPU密集型也叫计算密集型,指的是系统的硬盘.内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存),I/O在很短的时间就可以完成,而CPU还有许多运算要处理,CPU Loading很高. 在多重程序系统中,大部份时间用来做计算.逻辑判断等CPU动作的程序称之CPU bound.例如一个计算圆周率至小数点一千位以下的程序,在执行的过程当中绝大部份时间用在三角函数和开根号的计算,便是属于CPU

CPU密集型、IO密集型

CPU密集型(CPU-bound) CPU密集型也叫计算密集型,指的是系统的硬盘.内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存), I/O在很短的时间就可以完成,而CPU还有许多运算要处理,CPU Loading很高. IO密集型(I/O bound) IO密集型指的是系统的CPU性能相对硬盘.内存要好很多,此时,系统运作,大部分的状况是CPU在等I/O (硬盘/内存) 的读/写操作,此时CPU Loading并不高

影响IO密集型应用性能的因素

如果我们曾经在IO密集型应用中碰到过性能问题,那么我们可能都知道系统的性能会随磁盘压力增加而降低.这个因素是众所周知的,但是其背后的原因可能就不那么清晰了.本文将尝试解释这个过程背后所发生的事情. 一个典型的场景是当数据被写入一个文件时,它首先会被写入内存区域保留页面缓存:该缓存页保存还没有被写入的数据,这些数据被称为脏数据:经过一段事件后,根据IO策略,系统内核将这些脏数据刷新到持久化到硬盘的设备队列中.一旦数据到达队列,剩下的就是机器操作:设备驱动读取IO请求.接着是旋转,寻找和写入到文件所

IO密集型操作时,为什么线程比进程更好?

在IO密集型的操作时,进程线程都不会太占用CPU,但是进程消耗的资源比较多. 原文地址:https://www.cnblogs.com/apollo1616/p/10206063.html

Python的进程和线程(二)——IO密集型任务

一.什么是IO密集型任务? 主要的核心任务是进行IO操作,比如写文件,进行磁盘的读写等等. 上一篇博客,对计算密集型任务,多线程并没有体现它的好处,反而话费的时间更长.对IO密集型任务多线程会有明显的优势 二.举例: 任务:爬取韩寒的博客 1.获取urls, 2.根据文章的url,爬取内容,保存文件 3.将urls分给不同的进程/线程 4.多进程/多线程爬取 step1:爬取urls 思路:用requests库来爬取页面,用beautifulSoup库来获取目标的urls值 import req

CPU-bound(计算密集型) 和I/O bound(I/O密集型)/数据密集型

https://blog.csdn.net/q_l_s/article/details/51538039 I/O密集型 (CPU-bound)I/O bound 指的是系统的CPU效能相对硬盘/内存的效能要好很多,此时,系统运作,大部分的状况是 CPU 在等 I/O (硬盘/内存) 的读/写,此时 CPU Loading 不高.CPU bound 指的是系统的 硬盘/内存 效能 相对 CPU 的效能 要好很多,此时,系统运作,大部分的状况是 CPU Loading 100%,CPU 要读/写 I

linux cpu和IO优化

系统优化是一项复杂.繁琐.长期的工作,优化前需要监测.采集.测试.评估,优化后也需要测试.采集.评估.监测,而且是一个长期和持续的过程,不 是说现在优化了,测试了,以后就可以一劳永逸了,也不是说书本上的优化就适合眼下正在运行的系统,不同的系统.不同的硬件.不同的应用优化的重点也不同. 优化的方法也不同.优化的参数也不同.性能监测是系统优化过程中重要的一环,如果没有监测.不清楚性能瓶颈在哪里,怎么优化呢?所以找到性能 瓶颈是性能监测的目的,也是系统优化的关键.系统由若干子系统构成,通常修改一个子系