POJ - 3468A Simple Problem with Integers (线段树区间更新,区间查询和)

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers

解题思路:利用懒惰标记更新区间并求区间和

代码如下:

  1 #include<iostream>
  2 #include<stdio.h>
  3 using namespace std;
  4
  5 const int MAXN = 500005;
  6 int a[MAXN];
  7 long long int tree[MAXN*4];
  8 long long int lazy[MAXN*4];
  9 int N,Q;
 10 string s;
 11 int x , y, z;
 12 void push_down(int l ,int r ,int rt)
 13 {
 14     int m = (l+r)/2;
 15
 16     if(lazy[rt])
 17     {
 18         tree[rt*2] += lazy[rt]*(m-l+1);
 19         tree[rt*2+1] += lazy[rt]*(r-m);
 20         lazy[rt*2] += lazy[rt];
 21         lazy[rt*2+1] += lazy[rt];
 22         lazy[rt] = 0;
 23     }
 24 }
 25 void bulid_tree(int l ,int r ,int rt)
 26 {
 27     if(l==r)
 28     {
 29         tree[rt] = a[l];
 30         return ;
 31     }
 32     int m = (l+r)/2;
 33
 34     bulid_tree(l,m,rt*2);
 35     bulid_tree(m+1,r,rt*2+1);
 36     tree[rt] = tree[rt*2]+tree[rt*2+1];
 37 }
 38
 39 long long int Query(int x ,int y ,int l ,int r ,int rt)
 40 {
 41     long long sum = 0 ;
 42     if(x<=l&&r<=y)
 43     {
 44         return tree[rt];
 45     }
 46     int m = (l+r)/2;
 47     push_down(l,r,rt);
 48     if(x<=m)
 49     {
 50         sum += Query(x,y,l,m,rt*2);
 51     }
 52     if(m<y)
 53     {
 54         sum += Query(x,y,m+1,r,rt*2+1);
 55     }
 56     return sum;
 57 }
 58 void Update(int x ,int y ,int k ,int l ,int r ,int rt)
 59 {
 60     if(x<=l&&y>=r)
 61     {
 62         tree[rt] += k*(r-l+1);
 63         lazy[rt] += k;
 64         return ;
 65     }
 66     push_down(l,r,rt);
 67     int m = (l+r)/2;
 68     if(x<=m)
 69     {
 70         Update(x,y,k,l,m,rt*2);
 71     }
 72     if(y>m)
 73     {
 74         Update(x,y,k,m+1,r,rt*2+1);
 75     }
 76     tree[rt] = tree[rt*2]+tree[rt*2+1];
 77 }
 78 int main()
 79 {
 80     scanf("%d%d",&N,&Q);
 81     for(int i = 1 ; i <= N;i++)
 82     {
 83         scanf("%d",&a[i]);
 84     }
 85     bulid_tree(1,N,1);
 86     while(Q--)
 87     {
 88         cin>>s;
 89         if(s[0]==‘Q‘)
 90         {
 91             scanf("%d%d",&x,&y);
 92             printf("%lld\n",Query(x,y,1,N,1));
 93
 94         }
 95         else
 96         if(s[0]==‘C‘)
 97         {
 98             scanf("%d%d%d",&x,&y,&z);
 99             Update(x,y,z,1,N,1);
100         }
101     }
102     return 0;
103 }

原文地址:https://www.cnblogs.com/yewanting/p/10800242.html

时间: 2024-10-12 00:39:25

POJ - 3468A Simple Problem with Integers (线段树区间更新,区间查询和)的相关文章

POJ 3468 A Simple Problem with Integers 线段树 区间更新 区间查询

题目链接: http://poj.org/problem?id=3468 题目描述: 一组数列, 可进行一段区间加上某一个数, 和区间查询 解题思路: 线段树, 之前的那道题是求总区间直接输出sum[1] 就可以了, 这次有了区间查询, 同理, 查询的时候Pushdown 代码: #include <iostream> #include <cstdio> #include <string> #include <vector> #include <map

POJ 3468 A Simple Problem with Integers(线段树区间更新)

题目地址:POJ 3468 打了个篮球回来果然神经有点冲动..无脑的狂交了8次WA..居然是更新的时候把r-l写成了l-r... 这题就是区间更新裸题.区间更新就是加一个lazy标记,延迟标记,只有向下查询的时候才将lazy标记向下更新.其他的均按线段树的来就行. 代码如下: #include <iostream> #include <cstdio> #include <cstring> #include <math.h> #include <stac

(简单) POJ 3468 A Simple Problem with Integers , 线段树+区间更新。

Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval. 题意

[POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]

A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of

POJ 3468 A Simple Problem with Integers(线段树区间更新区间求和)

A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 67511   Accepted: 20818 Case Time Limit: 2000MS Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of

poj 3468 A Simple Problem with Integers 线段树区间更新

点击打开链接题目链接 A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 63565   Accepted: 19546 Case Time Limit: 2000MS Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations.

poj3468 A Simple Problem with Integers 线段树区间更新

A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 97722   Accepted: 30543 Case Time Limit: 2000MS Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of

POJ 3468 A Simple Problem with Integers(线段树 区间更新)

http://poj.org/problem?id=3468 题意 :对于一个序列有两种操作 1 查询 l到r 的和 2 对于l 到r上的每个数 加上 up 思路: 用单点更新必然超时 所以需要区间更新 (位运算时 注意 m-m>>1 与 m-(m>>1) 的区别) #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using names

POJ 3468 A Simple Problem with Integers (线段树区域更新)

A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 62431   Accepted: 19141 Case Time Limit: 2000MS Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of

POJ 3468-A Simple Problem with Integers(线段树:成段更新,区间求和)

A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 62228   Accepted: 19058 Case Time Limit: 2000MS Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of