2019大数据学习路线指南(最全知识点总结)

大数据是对海量数据进行存储、计算、统计、分析处理的一系列处理手段,处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据处理手段所无法完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的IT技术。
在这里还是要推荐下我自己建的大数据学习交流群:529867072,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一份最新的大数据进阶资料和高级开发教程,欢迎进阶中和进想深入大数据的小伙伴加入。
大数据入门,需要学习以下这些知识点:

1、Java编程技术

Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的。

2、Linux命令

对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令。

3、Hadoop

Hadoop是大数据开发的重要框架,其核心是HDFS和MapReduce,HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!

4、Hive

Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。

5、Avro与Protobuf

Avro与Protobuf均是数据序列化系统,可以提供丰富的数据结构类型,十分适合做数据存储,还可进行不同语言之间相互通信的数据交换格式,学习大数据,需掌握其具体用法。

6、ZooKeeper

ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。

7、HBase

HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。

8、phoenix

phoenix是用Java编写的基于JDBC API操作HBase的开源SQL引擎,其具有动态列、散列加载、查询服务器、追踪、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。

9、Redis

Redis是一个key-value存储系统,其出现很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用,它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便,大数据开发需掌握Redis的安装、配置及相关使用方法。

10、Flume

Flume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。

11、SSM

SSM框架是由Spring、SpringMVC、MyBatis三个开源框架整合而成,常作为数据源较简单的web项目的框架。大数据开发需分别掌握Spring、SpringMVC、MyBatis三种框架的同时,再使用SSM进行整合操作。

12、Kafka

Kafka是一种高吞吐量的分布式发布订阅消息系统,其在大数据开发应用上的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。大数据开发需掌握Kafka架构原理及各组件的作用和使用方法及相关功能的实现。

13、Scala

Scala是一门多范式的编程语言,大数据开发重要框架Spark是采用Scala语言设计的,想要学好Spark框架,拥有Scala基础是必不可少的,因此,大数据开发需掌握Scala编程基础知识!

14、Spark

Spark是专为大规模数据处理而设计的快速通用的计算引擎,其提供了一个全面、统一的框架用于管理各种不同性质的数据集和数据源的大数据处理的需求,大数据开发需掌握Spark基础、SparkJob、Spark RDD、spark job部署与资源分配、Spark shuffle、Spark内存管理、Spark广播变量、Spark SQL、Spark Streaming以及Spark ML等相关知识。

15、Azkaban

Azkaban是一个批量工作流任务调度器,可用于在一个工作流内以一个特定的顺序运行一组工作和流程,可以利用Azkaban来完成大数据的任务调度,大数据开发需掌握Azkaban的相关配置及语法规则。

16、Python与数据分析

Python是面向对象的编程语言,拥有丰富的库,使用简单,应用广泛,在大数据领域也有所应用,主要可用于数据采集、数据分析以及数据可视化等,因此,大数据开发需学习一定的Python知识。

原文地址:https://blog.51cto.com/14296550/2385984

时间: 2024-10-18 16:45:52

2019大数据学习路线指南(最全知识点总结)的相关文章

大数据学习路线及各阶段学习书籍推荐

大数据学习路线及各阶段学习书籍推荐!废话不多说,直接切入主题,有需要的小伙伴可以参考学习! 阶段一.大数据基础--java语言基础方面 (1)Java语言基础 Java开发介绍.熟悉Eclipse开发工具.Java语言基础.Java流程控制.Java字符串.Java数组与类和对象.数字处理类与核心技术.I/O与反射.多线程.Swing程序与集合类 (2) HTML.CSS与JavaScript PC端网站布局.HTML5+CSS3基础.WebApp页面布局.原生JavaScript交互功能开发.

什么是大数据?大数据学习路线和就业方向

大数据又称巨量资料,就是数据量大.来源广.种类繁多(日志.视频.音频),大到PB级别,现阶段的框架就是为了解决PB级别的数据. 专业的来讲:大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力.洞察力和流程优化能力的海量.高增长率和多样化的信息资产. 大数据的5V特点:Volume(大量).Velocity(高速).Variety(多样).Value(价值密度).Veracity(真实性). 二.学大数据需要什么语言基础? 首先,学习大数据是需要

好程序员大数据学习路线之hive表的查询

好程序员大数据学习路线之hive表的查询 1.join 查询 1.永远是小结果集驱动大结果集(小表驱动大表,小表放在左表). 2.尽量不要使用join,但是join是难以避免的. left join . left outer join . left semi join(左半开连接,只显示左表信息) hive在0.8版本以后开始支持left join left join 和 left outer join 效果差不多 hive的join中的on只能跟等值连接 "=",不能跟< &g

大数据学习路线

偶遇大数据学习路线,赶上一次科技革命不容易,追求下,要有所作为! 一.Hadoop入门,了解什么是Hadoop 1.Hadoop产生背景2.Hadoop在大数据.云计算中的位置和关系3.国内外Hadoop应用案例介绍4.国内Hadoop的就业情况分析及课程大纲介绍5.分布式系统概述6.Hadoop生态圈以及各组成部分的简介7.Hadoop核心MapReduce例子说明 二.分布式文件系统HDFS,是数据库管理员的基础课程 1.分布式文件系统HDFS简介2.HDFS的系统组成介绍3.HDFS的组成

大数据怎么学习?从零开始大数据学习路线

大数据.人工智能的崛起,都让很多人看到了信息技术的日新月异,也推动了更多传统型企业逐渐往互联网企业转型.如何更好的去分析客户群体,去抓住自己的客户所需,是离不开大数据的帮助的!为此,也有越来越多的企业看到大数据程序员岗位的重要性,不断的招兵买马,以求让自己的企业能够在这信息时代的竞争中立于不败之地!创一个小群,供大家学习交流聊天如果有对学大数据方面有什么疑惑问题的,或者有什么想说的想聊的大家可以一起交流学习一起进步呀.也希望大家对学大数据能够持之以恒大数据爱好群,如果你想要学好大数据最好加入一个

大数据学习路线整理

一.大数据技术基础 1.linux操作基础 linux系统简介与安装    linux常用命令–文件操作    linux常用命令–用户管理与权限    linux常用命令–系统管理    linux常用命令–免密登陆配置与网络管理    linux上常用软件安装    linux本地yum源配置及yum软件安装    linux防火墙配置    linux高级文本处理命令cut.sed.awk    linux定时任务crontab 2.shell编程 shell编程–基本语法    shel

好程序员大数据学习路线之hive存储格式

好程序员大数据学习路线之hive存储格式,hive的存储格式通常是三种:textfile . sequencefile . rcfile . orc .自定义 set hive.default.fileformat=TextFile; 默认存储格式为:textfile textFile:普通文本存储,不进行压缩.查询效率较低.1.sequencefile:hive提供的二进制序列文件存储,天生压缩.sequeceFile 和 rcfile都不允许使用load方式加载数据.需要使用insert 方

好程序员大数据学习路线分享hive的运行方式

好程序员大数据学习路线分享hive的运行方式,hive的属性设置: 1.在cli端设置 (只针对当前的session) 3.在java代码中设置 (当前连接) 2.在配置文件中设置 (所有session有效) 设置属性的优先级依次降低. cli端只能设置非hive启动需要的属性.(log属性,元数据连接属性) 查找所有属性: hive>set; 查看当前属性的值:通常是hadoop hive> set -v; 模糊查找属性: hive -S -e "set" | grep

好程序员大数据学习路线hive内部函数

好程序员大数据学习路线hive内部函数,持续为大家更新了大数据学习路线,希望对正在学习大数据的小伙伴有所帮助.1.取随机数函数:rand()语法: rand(),rand(int seed) 返回值: double 说明: 返回一个0到1范围内的随机数.如果指定seed,则会得到一个稳定的随机数序列select rand();select rand(10);2.分割字符串函数:split(str,splitor) 语法: split(string str, string pat) 返回值: ar