bzoj2839 集合计数(容斥)

2839: 集合计数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 883  Solved: 490
[Submit][Status][Discuss]

Description

一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得

它们的交集的元素个数为K,求取法的方案数,答案模1000000007。(是质数喔~)

Input

一行两个整数N,K

Output

一行为答案。

Sample Input

3 2

Sample Output

6

HINT

【样例说明】

假设原集合为{A,B,C}

则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB},{AC},{BC}

【数据说明】

对于100%的数据,1≤N≤1000000;0≤K≤N;

Source



这若干个集合的交集的方案数:$C(n,k)$

那么问题就转化成:对剩下的$m=n-k$个数,求集合取法,使它们之间没有交集

这种计数问题一般用容斥瞎搞

先求出$m$个数构成的集合的所有取法:$2^{2^{m}}-1$

共$2^{m}$个集合,每个集合可取可不取$(2^{2^{m}})$,再减去一个都不取的情况$(-1)$

蓝后我们把交集$>=1$的取法减掉

#include<iostream>//注意防爆int
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
#define N 1000005
const ll P=1000000007;
int n,k,m;ll ans,nw,inv[N],fac[N],ifac[N];
inline ll C(int a,int b){return fac[a]*ifac[b]%P*ifac[a-b]%P;}
int main(){
    scanf("%d%d",&n,&k);
    inv[1]=1; fac[0]=fac[1]=ifac[0]=ifac[1]=1;
    for(int i=2;i<=n;++i){
        inv[i]=1ll*(P-P/i)*inv[P%i]%P;
        fac[i]=fac[i-1]*i%P;
        ifac[i]=ifac[i-1]*inv[i]%P;
    }m=n-k;nw=2;
    for(int i=m;i>=0;--i,nw=nw*nw%P)
        ans=((ans+((i&1)?-1:1)*C(m,i)%P*(nw-1)%P)%P+P)%P;
    ans=ans*C(n,k)%P;
    printf("%lld",ans);
    return 0;
}

原文地址:https://www.cnblogs.com/kafuuchino/p/10780835.html

时间: 2024-10-23 12:48:57

bzoj2839 集合计数(容斥)的相关文章

hdu5072 Coprime 2014鞍山现场赛C题 计数+容斥

http://acm.hdu.edu.cn/showproblem.php?pid=5072 Coprime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) Total Submission(s): 354    Accepted Submission(s): 154 Problem Description There are n people standing in a

bzoj2839 集合计数

2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 243  Solved: 129 [Submit][Status][Discuss] Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得 它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample I

[日常训练]三视图(组合计数+容斥)

Description 给定两个长度为 \(n\) 的数组 \(a,b\). 要求给一个 \(n×n\) 的矩阵的每个位置填上一个非负整数,使得第 \(i\) 行的最大值为 \(a_i\),第 \(j\) 列的最大值为 \(b_j\). 求方案数对 \(998244353\) 取模的结果. \(1\leq n\leq 10^5\),\(1\leq a,b\leq 10^9\). Solution 显然可以把 \(a,b\) 分别降序排序,不影响结果. 记 \(c_{i,j}=min(a_i,b_

BZOJ 3456 NTT图的计数 容斥

思路: RT 懒得写了 //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; const int N=(1<<18)+5,mod=1004535809; int tmp[N],R[N],fac[N],A[N],B[N],C[N],niB[N]; int pow(ll x,ll y){

「总结」容斥。二.反演原理

二.反演原理 0.综述 说一下个人对反演的理解. 反演是一种手段,一种处理已知信息和未知信息关系的手段,用来得到未知信息的方式.也就是以一种既定的手段在较小的时间复杂度内用已知的信息得到未知的信息. 还有$zsq$学长更加浅显的解读. 反演一般就是把一个好看但难算的式子转化成一个难看且难算的式子在转化为一个难看但好算的式子. 先来一个裸一点的反演 下面要说我知道的四种反演. 子集反演,针对的是集合交并的容斥. 二项式反演,针对组合原理的容斥. 莫比乌斯反演,针对约数和倍数的容斥. 斯特林反演,针

【BZOJ2839】集合计数 组合数+容斥

[BZOJ2839]集合计数 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数,答案模1000000007.(是质数喔~) Input 一行两个整数N,K Output 一行为答案. Sample Input 3 2 Sample Output 6 HINT [样例说明]假设原集合为{A,B,C}则满足条件的方案为:{AB,ABC},{AC,ABC},{BC,ABC},{AB

【BZOJ 4455】 [Zjoi2016]小星星 容斥计数

dalao教导我们,看到计数想容斥……卡常策略:枚举顺序.除去无效状态.(树结构) #include <cstdio> #include <cstring> #include <algorithm> typedef long long LL; const int N=20; LL f[N][N]; int n,m,d[N][N],full; bool yeah[N]; int st[N],cnt; struct V{ int to,next; }c[N<<1

【XSY3156】简单计数II 容斥 DP

题目大意 定义一个序列的权值为:把所有相邻的相同的数合并为一个集合后,所有集合的大小的乘积. 特别的,第一个数和最后一个数是相邻的. 现在你有 \(n\) 种数,第 \(i\) 种有 \(c_i\) 个.求所有不同的序列的权值的和. \(n\leq 50,c_i\leq 100\) 题解 考虑第一个数和最后一个数不相邻时怎么做. 记 \(g_{i,j}\) 为出现了 \(i\) 次的数分成 \(j\) 个集合,所有集合大小的乘积的和. \[ g_{i,j}=\sum_{k=1}^ig_{i-k,

UOJ #214 合唱队形 (概率期望计数、DP、Min-Max容斥)

9个月的心头大恨终于切掉了!!!! 非常好的一道题,不知为何uoj上被点了70个差评. 题目链接: http://uoj.ac/problem/214 题目大意: 请自行阅读. 题解: 官方题解讲得相当清楚,这里补充一下自己的一些理解. 首先来看\(O(2^{n-m}\times poly(n,m))\)的做法. 一种理解方式是官方题解. 设\(s\)为总共的课程个数(\(n\)个字符串的总长度),\(p(S)\)表示结尾位置为集合\(S\)的串全部匹配一共需要完成多少个不同的课程.设\(f(t