linux内核模块编译makefile

linux内核可加载模块的makefile

在开发linux内核驱动时,免不了要接触到makefile的编写和修改,尽管网上的makefile模板一大堆,做一些简单的修改就能用到自己的项目上,但是,对于这些基础的东西,更应该做到知其然并知其所以然。
本篇文章中只讨论linux内核模块编译的makefile,linux内核makefile总览可以参考另一篇博客:linux内核makefile概览

本篇博客参考官方文档

linux内核使用的是kbuild编译系统,在编译可加载模块时,其makefile的风格和常用的编译C程序的makefile有所不同,尽管如此,makefile的作用总归是给编译器提供编译信息。

最简单的makefile

我们先来看看一个最简单的makefile是怎样的:

    obj-m+=hello.o
    all:
            make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) modules
    clean:
            make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) clean

这个makefile的作用就是编译hello.c文件,最终生成hello.ko文件。

obj-m+=hello.o

obj-m表示编译生成可加载模块。

相对应的,obj-y表示直接将模块编译进内核。

可以看到,这里并没有输入hello.c源文件,熟悉makefile的人应该知道,这得益于makefile的自动推导功能,需要编译生成filename.o文件而没有显示地指定filename.c文件位置时,make查找filename.c是否存在,如果存在就正常编译,如果不存在,则报错。

obj-m+=hello.o,这条语句就是显式地将hello.o编译成hello.ko,而hello.o则由make的自动推导功能编译hello.c文件生成。

all,clean

all,clean这一类的是makefile中的伪目标,伪目标并不是一个真正的编译目标,它代表着一系列你想要执行的命令集合,通常一个makefile会对应多个操作,例如编译,清除编译结果,安装,就可以使用这些伪目标来进行标记。在执行时就可以键入:

    make clean
    make install

等指令来完成相应的指令操作,当make后不带参数时,默认执行第一个伪目标的操作。

make -C /lib/modules/$(shell uname -r)/build/ M=$(PWD) modules

标准的make指令是这样的:make -C $KDIR M=$PWD [target],下面分别介绍每个字段的含义。

-C选项:此选项指定内核源码的位置,make在编译时将会进入内核源码目录,执行编译,编译完成时返回。

$KDIR:/lib/modules/$(shell uname -r)/build/,指定内核源码的位置。

直接在目标板上编译时,内核头文件默认存放在/lib/modules/$(shell uname -r)/build/中,这个build/目录是一个软连接,链接到源码头文件的安装位置。而内核真正的源码库则直接引用正在运行的内核镜像。

当跨平台编译时,就需要指定相应的内核源码目录,而不是系统中的源码目录,但是交叉编译时,需不需要指定架构平台和交叉编译工具链呢?我们接着往下看;

M=$(PWD):需要编译的模块源文件地址
***

[target]:modules,事实上,这是个可选选项。默认行为是将源文件编译并生成内核模块,即module(s),但是它还支持一下选项:

  • modules_install:安装这个外部模块,默认安装地址是/lib/modules/$(uname -r)/extra/,同时可以由内建变量INSTALL_MOD_PATH指定安装目录
  • clean:卸载源文件目录下编译过程生成的文件,在上文的makefile最后一行可以看到。
  • help:帮助信息

更多选项

编译多个源文件

hello_world总是简单的,但是在实际开发中,就会出现更复杂的情况,这时候就需要了解更多的makefile选项:

首先,当一个.o目标文件的生成依赖多个源文件时,显然make的自动推导规则就力不从心了(它只能根据同名推导,比如编译filename.o,只会去查找filename.c),我们可以这样指定:

    obj-m  += hello.o
    hello-y := a.o b.o hello_world.o

hello.o目标文件依赖于a.o,b.o,hello_world.o,那么这里的a.o和b.o如果没有指定源文件,根据推导规则就是依赖源文件a.c,b.c,hello_world.c.
除了hello-y,同时也可以用hello-objs,实现效果是一样的。

同时编译多个可加载模块

kbuild支持同时编译多个可加载模块,也就是生成多个.ko文件,它的格式是这样的:

    obj-m := foo.o bar.o
    foo-y := <foo_srcs>
    bar-y := <bar_srcs>

就是这么简单。

ifneq ($(KERNELRELEASE),)

通常,标准的makefile会写成这样:

    ifneq ($(KERNELRELEASE),)
    obj-m  := hello.o

    else
    KDIR ?= /lib/modules/`uname -r`/build

    all:
            $(MAKE) -C $(KDIR) M=$(PWD) modules
    clean:
            $(MAKE) -C $(KDIR) M=$(PWD) clean
    endif

为什么要添加一个ifneq,else,all条件判断。

这得从linux内核模块make执行的过程说起:当键入make时,make在当前目录下寻找makefile并执行,KERNELRELEASE在顶层的makefile中被定义,所以在执行当前makefile时KERNELRELEASE并没有被定义,走else分支,直接执行

    $(MAKE) -C $(KDIR) M=$(PWD) modules

而这条指令会进入到$(KDIR)目录,调用顶层的makefile,在顶层makefile中定义了KERNELRELEASE变量.

在顶层makefile中会递归地再次调用到当前目录下的makefile文件,这时KERNELRELEASE变量已经非空,所以执行if分支,在可加载模块编译列表添加hello模块,由此将模块编译成可加载模块放在当前目录下。

归根结底,各级子目录中的makefile文件的作用就是先切换到顶层makefile,然后通过obj-m在可加载模块编译列表中添加当前模块,kbuild就会将其编译成可加载模块。

如果是直接编译整个内核源码,就省去了else分支中进入顶层makefile的步骤。

需要注意的一个基本概念是:每一次编译,顶层makefile都试图递归地进入每个子目录调用子目录的makefile,只是当目标子目录中没有任何修改时,默认不再进行重复编译以节省编译时间。

这里同时解决了上面的一个疑问:既然是从顶层目录开始编译,那么只要顶层目录中指定了架构(ARCH)和交叉编译工具链地址(CROSS_COMPILE),各子目录中就不再需要指定这两个参数。

头文件的放置

当编译的目标模块依赖多个头文件时,kbuild对头文件的放置有这样的规定:

  • 直接放置在makefile同在的目录下,在编译时当前目录会被添加到头文件搜索目录。
  • 放置在系统目录,这个系统目录是源代码目录中的include/linux/。
  • 与通用的makefile一样,使用-I$(DIR)来指定,不同的是,代表编译选项的变量是固定的,为ccflag.
      一般的用法是这样的:
    
              ccflags-y := -I$(DIR)/include
      kbuild就会将$(DIR)/includ目录添加到编译时的头文件搜索目录中。  

linux内核makefile总览可以参考另一篇博客:linux内核makefile概览

好了,关于linux编译内核模块的makefile介绍就到此为止啦,如果朋友们对于这个有什么疑问或者发现有文章中有什么错误,欢迎留言

原创博客,转载请注明出处!

祝各位早日实现项目丛中过,bug不沾身.

原文地址:https://www.cnblogs.com/downey-blog/p/10486907.html

时间: 2024-08-03 05:36:44

linux内核模块编译makefile的相关文章

Linux 内核模块编译 Makefile

驱动编译分为静态编译和动态编译:静态编译即为将驱动直接编译进内核,动态编译即为将驱动编译成模块. 而动态编译又分为两种: a -- 内部编译 在内核源码目录内编译 b -- 外部编译 在内核源码的目录外编译 二.具体编译过程分析   注:本次编译是外部编译,使用的内核源码是Ubuntu 的源代码,而非开发板所用linux 3.14内核源码,运行平台为X86. 对于一个普通的linux设备驱动模块,以下是一个经典的makefile代码,使用下面这个makefile可以完成大部分驱动的编译,使用时只

linux/module.h: No such file or directory 内核模块编译过程

1.缺少Linux kernel头文件 To install just the headers in Ubuntu: sudo apt-get install linux-headers-$(uname -r) To install the entire Linux kernel source in Ubuntu: sudo apt-get install linux-source Note that you should use the kernel headers that match th

linux内核编译与开发

一.Linux内核简介linux kernel map: linux 系统体系结构: linux kernel体系结构: arm有7种工作模式,x86也实现了4个不同级别RING0-RING3,RING0级别最高, 这样linux用户代码运行在RING3下,内核运行在RING0,这样系统本身就得到了 充分的保护 用户空间(用户模式)转到内核空间(系统模式)方法: ·系统调用 ·硬件中断 linux kernel 体系结构: 虚拟文件系统VFS: VFS(虚拟文件系统)隐藏各种文件系统的具体细节,

3、Linux内核模块学习

一.内核模块的学习   内核的整体框架是非常的大,包含的组件也是非常多,如何将需要的组件包含在内核中呢?选择一,就是将所有的组件全部编译进内核,虽然需要的组件都可以使用,但是内核过分庞大,势必带来效率影响:选择二是,将组件编译为模块,需要的时候,就自行加载进内核,这种就是我们称之为的模块,当模块被加载到内核的机制,不仅控制了内核大小,同时被加载的内核与被编译进内核的部分,功能意义.    3.1.内核的加载与卸载     将 hello.c 编译为模块,hello.ko, insmod hell

Linux内核模块编写详解

内核编程常常看起来像是黑魔法,而在亚瑟 C 克拉克的眼中,它八成就是了.Linux内核和它的用户空间是大不相同的:抛开漫不经心,你必须小心翼翼,因为你编程中的一个bug就会影响到整个系统,本文给大家介绍linux内核模块编写,需要的朋友可以参考下 内核编程常常看起来像是黑魔法,而在亚瑟 C 克拉克的眼中,它八成就是了.Linux内核和它的用户空间是大不相同的:抛开漫不经心,你必须小心翼翼,因为你编程中的一个bug就会影响到整个系统.浮点运算做起来可不容易,堆栈固定而狭小,而你写的代码总是异步的,

linux 内核模块函数调用

在编写linux内核模块的时候,有时候我们需要调用一只内核模块里面的函数,然而如果是在不同目录下面编译生成的内核模块,此时A模块去调用B模块的函数时候会出现函数未定义,无法调用的情况.那么以前我是在同一个目录下面,先后写两个makefile,然后编译生成两个不同的内核模块,这种方式可以正常实现A模块调用B模块里面的函数,不过非常麻烦.本博文将会针对这种情况提出一种可以同时生成多个内核模块,不要再次编译的方面,下面贴出源码: 内核模块cal.ko: #include <linux/module.h

Linux内核模块编程与内核模块LICENSE -《详解(第3版)》预读

Linux内核模块简介 Linux内核的整体结构已经非常庞大,而其包含的组件也非常多.我们怎样把需要的部分都包含在内核中呢?一种方法是把所有需要的功能都编译到Linux内核.这会导致两个问题,一是生成的内核会很大,二是如果我们要在现有的内核中新增或删除功能,将不得不重新编译内核. 有没有一种机制使得编译出的内核本身并不需要包含所有功能,而在这些功能需要被使用的时候,其对应的代码被动态地加载到内核中呢?Linux提供了这样的一种机制,这种机制被称为模块(Module).模块具有这样的特点. 模块本

Linux内核模块简介

1. 宏内核与微内核 内核(Kernel)在计算机科学中是操作系统最基本的部分,主要负责管理系统资源.中文版维基百科上将内核分为四大类:单内核(宏内核):微内核:混合内核:外内核. 混合内核实质上也是微内核,而外内核是一种比较极端的设计方法,目前还处于研究阶段,所以我们就着重讨论宏内核与微内核两种内核. 简单的介绍,宏内核(Monolithickernel)是将内核从整体上作为一个大过程来实现,所有的内核服务都在一个地址空间运行,相互之间直接调用函数,简单高效.微内核(Microkernel)功

内核模块编译过程摘要记录

内核模块编译 1.实验原理 Linux模块是一些可以作为独立程序来编译的函数和数据类型的集合.之所以提供模块机制,是因为Linux本身是一个单内核.单内核由于所有内容都集成在一起,效率很高,但可扩展性和可维护性相对较差,模块机制可弥补这一缺陷. Linux模块可以通过静态或动态的方法加载到内核空间,静态加载是指在内核启动过程中加载:动态加载是指在内核运行的过程中随时加载. 一个模块被加载到内核中时,就成为内核代码的一部分.模块加载入系统时,系统修改内核中的符号表,将新加载的模块提供的资源和符号添